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There’s Plenty of Room at the Bottom.

— Richard P. Feynman [10]

I N T R O D U C T I O N

A superconducting condensate is characterized by the emergence of
macroscopic and collective order, established between its constituent
electrons. The degree of correlation at a given spatial position is a
complex scalar: it is characterized both by an amplitude (proportional to
the minimal energy to generate a fundamental excitation) and a complex
phase. Through its gradient, the latter enables the flow of the condensate,
demonstrating the quantum fingerprint of superconductivity.

Superconductors exhibit strong coupling to electromagnetic fields,
so that phase-dependent dissipationless transport through “weak link”
circuital elements is easily manipulated by applying voltage or magnetic
flux bias to superconducting terminals and loops, respectively. For these
reasons, superconducting electronics is nowadays a core technology
to enable robust access and manipulation of the fundamental degrees
of freedom in quantum devices, from ultrasensitive electromagnetic
sensors to superconducting qubits.

In this work, we explore different designs of micro-magnetometers
based on superconducting interferometers. Differently from conven-
tional designs based on Superconductor, Insulator, Superconductor (SIS)
tunnel junctions, here the core elements are nanoscale diffusive metal
wires acting as superconducting weak links. These consist in circuital
dishomogeneities that can be fabricated over scales much smaller than
typical superconductor coherence lengths, typically yielding unique
response properties. On the other hand, their intrinsic transparency is
usually associated with strong supercurrent concentration, which can
severely limit their practicality due to superconducting depairing and
thermal-driven hysteresis upon switching to the dissipative regime.
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2 introduction

In this thesis we demonstrate how a judicious use of nanofabricated
designs makes it possible to counter these drawbacks and achieve com-
plete phase polarization in interferometers based on diffusive weak links.
The resulting micro-magnetometers are characterized by extremely high
magnetic responsivity.

structure of the thesis

The thesis begins with part i: methods, containing a detailed synopsis
of the theoretic and experimental groundwork (chapters 1 and 2, re-
spectively) of the thesis. Of these, chapter 1 is particularly sizeable, and
contains my continuing exploration of the foundations of mesoscopic
superconductivity, seeded by the guidance of my instructor; interactions
with senior scientists and coworkers, my academic track, and the broad
amount of literature on this subject, all contributed to its contents.

The main body of the thesis is part ii: investigations, contain-
ing four chapters, each corresponding to a core investigation, whose
findings have been published in peer-reviewed journals. Chapter 3 fea-
tures a study on microscale Superconducting QUantum Interference
Devices (SQUIDs) based on V/Cu Superconductor, Normal-metal, Super-
conductor (SNS) weak links [1]. In chapter 4, the V/Cu SQUID design is
extended to include an additional magnetic flux-coupling loop, yielding
improved interferometric response [2].

The most favorable magnetic flux sensitivity is achieved with Super-
conducting QUantum Interference Proximity Transistor (SQUIPT) devices.
Chapter 5 presents the design and characterization of the first SQUIPT

capable of complete phase modulation of the minigap in a short Al/Cu
SNS weak link, leading to excellent performance [3, 5] at 240mK. The
thesis is concluded with chapter 6, where these optimal design prin-
ciples are applied to the phase-bias of a nanoscale Al Superconductor,
Superconductor, Superconductor (SSS) weak link up to the point of com-
plete collapse of the order parameter in its center. As a consequence of
the sudden character of this collapse, the resulting device demonstrates
record magnetometric figures [4, 6] at 1K.
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L I S T O F A C R O N Y M S
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Part I

M E T H O D S





1T H E O R E T I C F U N D A M E N TA L S

The goal of this chapter is to present a synopsis on key concepts in
the theory of mesoscopic superconductivity. This compendium sets
the context for the topics encountered in the following chapters and
provides a focused description for the constituent elements of the
fabricated devices.

The chapter begins with a brief overview of selected physical proper-
ties of a Bardeen, Cooper and Schrieffer (BCS) superconductor. The focus
then shifts towards the general definition and dynamics of supercon-
ducting weak links. A discussion on phase-bias limitations completes
the overview on the general properties of superconducting interfer-
ometry. The second part of the chapter is dedicated to a more fine-
grained description of individual circuit elements. The Andreev Bound
State (ABS), fundamental building block for Cooper-pair transport be-
tween coupled superconductors, is introduced and discussed. Then,
transport phenomena between metals separated by a thin oxide layer
are discussed in terms of both quasiparticle and Cooper-pair transfer.
Finally, weak links characterized by transparent interfaces between
the superconducting electrodes and a diffusive conduction channel are
reviewed. The semiclassical modelization provided by the Usadel frame-
work is illustrated, including physical observables and analytical limits
for the long and short junction. The chapter is concluded by the discus-
sion of weak links based on nanostructured diffusive superconducting
channels.

1.1 properties of bcs superconductors

The advance in cryogenics that allowed the first liquefaction of helium
at the beginning of the twentienth century quickly led to the observation
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12 1 theoretic fundamentals

of zero electrical resistance in a mercury sample cooled below 4.2K
[11]. This event marks the discovery of one of the most spectacular
manifestations of the quantum nature of matter.

Although a considerable wealth of phenomenological data and theo-
retical models [12, 13] had been accumulated on the subject since then,
a full explanation from first principles of superconductivity was not
developed until 1957, with the BCS theory [14]. This theory shows that,
in the presence of so much as a non-zero attractive interaction between
the electrons1, the Fermi sphere is expected to be energetically unstable
as the temperature is lowered below a material-dependent threshold:
the critical temperature (Tc). In this condition, pairs of electrons having
opposite spin couple to form a bound state of zero spin: the Cooper
pair. Due to the bosonic nature of the pairs, they can collectively occupy
the ground state of an highly-correlated macroscopic condensate.

The signature of the non-zero binding energy of pairs appears as an
energy gap in the Density Of States (DOS) of single-particle excitations
(shown in fig. 1.2), amounting to ∆ per electron. This quantity vanishes
above the critical temperature, and approaches the finite value ∆0 in
the zero-temperature limit. The full BCS ∆(T) dependence is determined
by the characteristics of the phonon-mediated interaction via the self-
consistency equation for the gap:

1

λ
=

∫  hωD

∆(T)

dE√
E2 −∆(T)2

tanh
(

E

2kBT

)
, (1.1)

where  h and kB are respectively the reduced Planck’s and Boltzmann’s
constants. Material-dependent parameters include the high-frequency
cutoff for phonon interaction ωD and the adimensional parameter λ
describing the strength of the effective interaction between the paired
electrons. In the limit of weak coupling2 λ � 1, eq. (1.1) yields Tc ≈
1.13  hωD/kB exp(−1/λ) as well as ∆0 = ∆(0) =  hωD/ sinh(1/λ); in

1 In conventional superconductors this interaction is mediated by phonons, meaning that
electrons are reciprocally coupled by the vibrations of the crystalline lattice.

2 This can be assumed to be the case for all elemental superconductors.



13

particular, ∆0 ≈ 1.76 kBTc. In the weak coupling limit, the normalized
∆(T/Tc)/∆0 assumes the dependence shown in fig. 1.1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
T/Tc

0.0

0.2

0.4

0.6

0.8

1.0

∆
(T

)/
∆
0

Figure 1.1: Temperature dependence of the gap for a superconductor in the
weak coupling limit of BCS.

The BCS theory also provides the functional form of the DOS of the
single-particle excitations of the Cooper condensate

ρS(E) = N0
|E|√

E2 −∆2
Θ(|E|−∆) , (1.2)

where the energy variable E is relative to the Fermi energy, Θ is the
Heaviside step function and N0 is the value of the DOS at the Fermi
energy for the normal state. From the functional in eq. (1.2) it can be
seen that the energy gap developed with the superconducting transi-
tion displaces the single-electron states at the Fermi energy from the
constant3 normal metal DOS but overall conserving the number of states.

The appearance of a Cooper condensate is a manifestation of a second-
order phase transition, in which the order parameter is proportional

3 The DOS in the normal state is approximately constant over the energy range relevant to
superconducting phenomena, the typical values of ∆ being negligible when compared to
the Fermi energy.
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Figure 1.2: Normalized quasiparticle DOS in the BCS theory (red). The normal-
state DOS is superimposed as a dashed black line. The energy scale
is relative to the Fermi energy and normalized to ∆.

to electronic correlation. To describe the latter, a position-dependent
complex pair amplitude is generally adopted. Its magnitude is set to
∆(r); the phase degree of freedom φ(r) is introduced to account for
supercurrent-carrying states of the condensate4. In fact, this picture
corresponds to a Schrödinger-like description of the Cooper condensate
in terms of the wavefunction

ψ(r) ∝ ∆(r) exp(iφ(r)) . (1.3)

With an opportune normalization of the wavefunction, |ψ|2 = nS, the
spatial density of Cooper pairs. Then, the current density can be derived
as

jS =
qp

2mp

[
(ψ∗p̂ψ−ψp̂ψ∗) − 2qpA(r)|ψ|2

]
, (1.4)

where qp = 2e and mp are respectively the charge and mass of a
Cooper pair; the term containing the vector potential A(r) accounts

4 I. e., when the net collective momentum of the ground state of the condensate is different
from zero.
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for the magnetic interaction under minimal coupling. Substituting the
functional form of eq. (1.3) in eq. (1.4) yields

jS = nS
qp

mp

[
 h~∇φ− qpA

]
, (1.5)

where the term in square parentheses is the kinetic momentum.

1.2 general properties of weak links

In the broadest sense, a weak link is a portion of a superconducting
path featuring a spatially localized suppression of the critical current
value5 with respect to its neighboring parts. Actual implementations
are numerous [15]: they include thin insulating barriers, geometric
constrictions and point contacts, as well as hybrid structures based on
normal metals, ferromagnets, topological insulators, graphene, high-
mobility semiconducting elements, carbon nanotubes, semiconducting
nanowires and quantum dots.

Regardless of their specific nature, weak links are important in su-
perconducting circuits, where they provide preferential pinning points
for the establishment of phase gradients. As a result, the supercurrent
flowing across a weak link is a function of the well-defined phase dif-
ference across its boundaries [16]. This functional dependence is called
Current-Phase Relation (CPR); in symbols IS(θ), where θ is the gauge-
invariant phase difference across the weak link. The latter is derived
from the kinetic momentum in eq. (1.5) so that the value of the integral

θ ≡
∫e2
e1

mpv · dr
 h

= ∆φ−
qp
 h

∫e2
e1

A · dr (1.6)

is independent from the particular choice for the electromagnetic gauge;
in eq. (1.6) e1, e2 label the electrodes and ∆φ is the difference in phase
of the order parameter between the electrodes. In absence of magnetic

5 I. e., the maximal current that can be supported without collapsing the superconducting
phase.
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field θ ≡ ∆φ. To complement the general definition of a weak link,
eq. (1.6) can be reworked as

~∇θ =
mpv

 h
=
mp
 hqp

jS
nS

, (1.7)

to show that considerable phase gradients are expected either with the
suppression of the spatial density of the Cooper pair condensate (this
is the case in tunnel junctions) or whenever a geometric constriction
increases the current density. Both effects are typically present in most
weak link implementations.

Independently from the specific composition of a weak link, the
following fundamental properties apply to its CPR.

periodicity : The physical state of a Cooper condensate is the same
when the phase is rotated by 2π; hence the CPR is a 2π-periodic
function of its argument.

IS(θ) = IS(θ+ 2π)

parity : Due to time-reversal symmetry, a change in the direction of
the supercurrent has to be matched by a change in the sign of the
phase gradient; hence the CPR is an odd function of its argument.

IS(−θ) = −IS(θ)

nodes : Zero current is expected when θ equals to zero, due to the odd
parity. Additionally, the combination of parity and periodicity also
requires the current to be zero when θ equals to π or its integer
multiples.

IS(πn) = 0 ∀n ∈ Z

The properties listed above can be embodied in the following Fourier
series expansion:

IS(θ) =

∞∑

k=1

Ik sin(kθ) . (1.8)
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The free energy of a weak link can be obtained by integration of the
CPR, in analogy with the energy stored in an inductor:

Ewl(θ) =

∫θ

0
Lwl(ϑ)IS(ϑ)dIS =

 h

2e

∫θ

0
IS(ϑ)dϑ . (1.9)

Here, the non-linear inductance of the weak link is defined as

Lwl(θ) =
 h

2e

(
dIS
dθ

)−1

. (1.10)

1.3 josephson dynamics

In 1962 Josephson published the key prediction that two superconduc-
tors separated by a tunnel junction could support a dissipationless cur-
rent due to the coherent tunneling of Cooper pairs [17]. The equations
describing this phenomenon (called Josephson effect) are remarkably
simple.

IS(θ) = Ic sin θ (1.11)
dθ

dt
=
2eVj

 h
(1.12)

Here θ is the gauge-invariant phase difference, IS and Vj are respec-
tively the supercurrent and the voltage at the junction, and Ic is the
maximal supercurrent that can be sustained by the weak link in the
non-dissipative state.

Although the derivation of eqs. (1.11) and (1.12) was targeted to
quantum tunneling in SIS junctions, it has since been recognized that
its range of applicability extends to most superconducting weak links.
In particular, the harmonic CPR in eq. (1.11) has been found to be the
limiting form of the more general eq. (1.8) when the superconducting
electrodes are suitably weakly-coupled6. Equation (1.12) is even more

6 Exceptions to this case include high-transparency tunnel barriers, short diffusive con-
tacts at low temperature and systems characterized by depairing induced by strong
supercurrent concentration, as well as superconducting atomic contacts.
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general, being derivable from the unitarity of the temporal evolution of
the phase difference between two Cooper condensates having different
values of the chemical potential.

Ib

R C Ic Vj

Figure 1.3: Equivalent circuit for the RCSJ model.

Equations (1.11) and (1.12) provide the foundation to model the
dissipative state of a current-biased Josephson junction in actual su-
perconducting devices. In the Resistively and Capacitively Shunted
Junction (RCSJ) model, the physical junction is schematized as the par-
allel of an ideal Josephson weak link, a resistor and a capacitor. This
arrangement, shown in fig. 1.3, is described by the following equation:

Ib = Ic sin θ+
Vj

R
+C

dVj

dt
, (1.13)

where Ib is the bias current and C, R are respectively the interelectrode
capacitance and the effective resistance7 of the physical junction.

Substitution of eqs. (1.11) and (1.12) in eq. (1.13) yields the second
order nonlinear differential equation:

 hC

2e
θ̈+

 h

2eR
θ̇ = Ib − Ic sin θ , (1.14)

7 Here the approximation corresponds to a linearized current-voltage response, wherein
the linear coefficient depends on the characteristic of the junction. In SIS junctions the
relevant figure is the subgap resistance, which can be significantly larger than the tunnel
resistance at low temperature.
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θ/π

Uj

Ib > Ic

Figure 1.4: Washboard potential in the RCSJ model.

where the dots indicate the time derivatives. The latter equation de-
scribes a dynamic analogous to a massive particle subjected to drag
moving in the potential

Uj(θ) = −
 h

2e

∫
[Ib − Ic sin ϑ]dϑ = −Ej (cos θ+ ibθ) , (1.15)

where ib = Ib/Ic is the normalized bias current and Ej =  hIc/2e is
the Josephson energy. The cosine term in eq. (1.15) is actually the free
energy of the junction, obtained by integration of the sinusoidal CPR of
eq. (1.11).

Figure 1.4 shows Uj(θ) in two limiting cases. When the external bias
current is less than the critical current of the junction (leftmost plot)
the potential landscape admits several equivalent local minima, located
at θ∗ = arcsin(ib) in the steady state. The voltage developed by the
junction is null. Conversely, when the external bias current is larger than
the critical current (rightmost plot) no equilibrium points are present,
and the θ variable is forced to evolve with a non-zero time-averaged θ̇,
corresponding to a finite Vj by virtue of eq. (1.12).
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To explicitate the role of junction capacitance (i. e., the mass parame-
ter), eq. (1.14) is reworked in a more compact form:

βcθ
′′ + θ ′ + sin θ = ib , (1.16)

where βc = 2eCR2Ic/ h is the Stewart-McCumber parameter and the
prime (′) symbols denote differentiation with respect to the normalized
time τ = t/τRL = 2etRIc/ h. In the low-capacitance regime (or over-
damped limit, corresponding to βc � 1), the dynamics reduce to the
so-called Resistively Shunted Junction (RSJ) model. There is no kinetic
energy associated to the evolution of θ, so that the “particle” is imme-
diately released from or trapped to a local minimum of Uj when the
bias current crosses the critical current. In the opposite high-capacitance
case (underdamped limit, βc � 1), the kinetic term is sizeable and a
retrapping event8 may only be possible with the voltage (proportional
to the velocity in the moving particle picture) falling under a certain
threshold.

Physical SIS junctions often natively belong to the underdamped
regime; their current-voltage characteristics show significant amount
of switching-retrapping hysteresis9. On the contrary, low-impedance
Josephson weak links such as SNS junctions are intrinsically overdamped,
being characterized by both negligible normal-state resistance and
interelectrode capacitance.

Although rather idealized, the RCSJ model captures the essence of the
time-dependent processes occuring in several physical implementations
of superconducting circuits. It has been extended to include fluctuation
effects to accurately design devices of great practical importance such
as SQUIDs and junction arrays in use as metrological standards. Last but
not least, the quantum mechanical treatment of the tilted-washboard
potential is a fundamental building block for the design of frontier
technology such as quantum computation in circuit QED.

8 I. e., the return to the zero-voltage state.
9 A practical solution to suppress this type of hysteresis is to add an external shunting

resistor to the junction. Its purpose is to enhance the relative effect of the “drag” term in
eq. (1.14), bringing βc to the overdamped limit.



21

1.4 phase bias techniques

External control of the phase difference of individual Josephson junc-
tions arranged in a non simply-connected topology enables supercurrent
interferometry. In the previous section it has been implied that a partial
degree of phase control can be achieved by imposing a fixed current
bias to a weak link in the zero-voltage state. With this technique, the
junction can only be phase-biased in a subset of the full 0–2π range; for
example, in the common case of a sinusoidal CPR, θ∗ = arcsin(Ib/Ic),
with θ∗ ∈ (−π/2, π/2).

Access to the full 0–2π range is feasible by exploiting a fundamental
property of the superconducting condensate, namely the fact that its
order parameter is a single-valued scalar function of the spatial coor-
dinate. The single-valuedness requirement constrains the value of any
closed-loop line integral of the gradient of the phase to multiples of 2π:

∮
~∇φ · dr = 2πn , with n ∈ Z . (1.17)

Recalling that the canonical momentum of the condensate is p = mpv+

qpA =  h~∇φ, eq. (1.17) yields the quantization [18, 19] of the fluxoid F

in terms of the flux quantum Φ0 = h/2e:

F =
1

qp

∮
(mpv + qpA) · dr =

 h

qp

∮
~∇φ · dr = nΦ0 . (1.18)

For a Cooper condensate spanning a simply-connected domain F = 0.
In particular, in the limit of a vanishing path this constraint reduces
eq. (1.18) to:

~∇× j = qpns~∇× v = −
nsq

2
p

mp
B , (1.19)

which corresponds to the second London equation. Conversely, in a
non simply-connected topology, such as a superconducting ring, the
fluxoid can assume non-zero (integer) values, leading to the well-known
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quantization of the magnetic flux for rings which are thick compared to
the magnetic penetration length.

Interrupting a superconducting ring with a weak link, as shown in
fig. 1.5, allows the latter to be phase-biased by the application of a
magnetic field threading the ring. In fact, the gauge-invariant phase dif-

L IcΦ

J

Figure 1.5: Equivalent circuit for magnetic flux biasing.

ference across the weak link can be derived by performing the following
integration over the loop:

θ =

∮
~∇φ · dr =

2π

Φ0

[
Φ+

mp

qp

∮
jS

qpmp
· dr
]

=
2π

Φ0

[
Φ+ µ0λ

2
L

∮
jS · dr

]
,

(1.20)

whereΦ is the applied magnetic flux, µ0 is the magnetic permeability of

free space and λL =
√
mp/µ0npq2p is the London magnetic penetration

depth.
The path integral term in eq. (1.20) originates from the kinetic momen-

tum, scales as the normal state resistance of the superconducting ring
and it is proportional to the circulating supercurrent. For these reasons,
it is considered equivalent to an inductive screening to the externally ap-
plied magnetic flux, to be added to the geometric self-inductance term.
The kinetic inductance term can become sizeable especially in the case
of nanostructured superconducting loops, where the cross-section of
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the constituents is often comparable to the scale of London penetration
depth. In this formalism, eq. (1.20) is equivalent to

θ =
2π

Φ0
[Φ−LJ(θ)] , (1.21)

where L is an effective inductance whose value is the sum of both kinetic
and geometric components. The circulating current J is a function of
θ via the CPR of the weak link; its sign is negative due to the fact that
the current density in eq. (1.20) opposes the applied magnetic field
consistently with eq. (1.19).

−4 −2 0 2 4

θ/π

Ul

−4 −2 0 2 4 6

θ/π

Ul

βL = 0.9
βL = 3.0
βL = 9.0
2πΦ/Φ0

Figure 1.6: Effective potential of a Josephson weak link embedded in a super-
conducting loop.

In the case of a sinusoidal Josephson relation, eq. (1.21) can be re-
worked in:

2π
Φ

Φ0
= θ+βL sin θ , (1.22)
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where βL = 2πLIc/Φ0 is the adimensional inductive screening param-
eter. Equation (1.22) describes the position of the local maxima and
minima of an effective potential Ul, in analogy with eq. (1.15):

Ul(θ) = Ej




(
θ− 2π ΦΦ0

)2

2βL
+ (1− cos θ)


 , (1.23)

where the parabolic term is the free energy of the inductor, whose CPR

is linear. In the limit of vanishing βL this term constrains the value of
θ to be identically equal to 2πΦ/Φ0. Figure 1.6 shows the effect of an
increasing βL parameter. With no external magnetic flux (left panel),
the global minimum of Ul is located at θ = 0 independently of the
value of βL. On the other hand, for Φ = Φ0/2 (right panel) potential
curves having βL > 1 show multiple local minima.

Graphical representations of eq. (1.22) for different βL values are
presented in fig. 1.7. Coherently with the previous discussion, it can
be noted that a bijective θ-Φ relation is only possible when βL < 1,
where θ = π is still a local minimum for Ul with Φ = Φ0/2. Hysteretic
phenomena and phase-tunneling between different local minima are
expected with βL > 1. The critical value βL = 1 corresponds to a
divergent dθ/dΦ value at Φ = Φ0/2.
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Figure 1.7: Inductance-based hysteresis in magnetic phase bias. Solutions to
eq. (1.22) for different values of the inductive screening parameter βL
are plotted in the θ, Φ space. Non-hysteretic θ(Φ) is only possible
with βL < 1.
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1.5 andreev transport

Although the functional description of superconducting weak links
in sections 1.2 to 1.4 provides a vast amount of predictions regarding
their transport dynamics, a more insightful picture can be obtained
by considering the microscopic foundation of interface-bound super-
current transport. In particular, the latter can be understood in terms
of a peculiar charge transport mechanism occurring at a transparent
Superconductor, Normal-metal (SN) interface: the Andreev reflection [12,
13, 20].

An electron having energy close to the chemical potential of the
normal domain of an unbiased clean SN interface is not expected to
propagate as a quasiparticle in the superconductor due to the presence
of the energy gap in the excitation spectrum of the latter. On the other
hand, an elastic reflection would require a momentum change of the
order of twice the Fermi momentum in order to reverse the motion of
the electron. However, the relative change in momentum that may be
provided by the “barrier” represented by the gap is proportional to the
ratio ∆/EF � 1, where EF is the Fermi energy. As such, momentum
conservation prevents the electron from being elastically back-reflected
into the normal metal.

In an Andreev reflection the electron can instead be back-reflected as
a hole. This event is accompanied by the generation of a Cooper pair
in the superconducting electrode. The whole process satisfies energy
and momentum conservation and results in a net transfer of twice
the elementary charge, leading to a significant enhancement of the
subgap conductance10. As a result of the interaction with the Cooper
condensate, the relative phases of the impinging electron and the back-
reflected hole are correlated. In a SNS structure in which the effective
electron path length is less than the coherence length, the Andreev

10 The subgap conductance of an ideally transparent SN junction is twice the conductance
of the corresponding nn system obtained, e. g., by quenching the superconductivity with
the application of a strong magnetic field.
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reflection events at the two SN interfaces interfere constructively leading
to the appearence of Andreev Bound States (ABSs) [21].

ABSs are supercurrent-carrying electronic quantum states localized at
the weak link; their energy is a function of the phase difference across
the superconducting electrodes. The total supercurrent in a generic
weak link can be thought of as resulting from the integration of a phase-
dependent energy distribution of supercurrent called spectral current.
The total supercurrent carried by ABSs in stationary conditions can be
expressed in the general form:

IS(θ) =

∫+∞

−∞
Isp(ε, θ) tan

(
ε

2kBT

)
dε , (1.24)

where Isp is an appropriate spectral current, incorporating the CPR de-
pendence of each ABS as well as their distribution in energy. Depending
on the nature of the weak link, the spectral current may assume a struc-
ture peaked at specific energy values corresponding to well-defined
electron trajectories; this is typical for ballistic conduction channels.
On the other hand, the presence of disorder such as the grain-to-grain
scattering in diffusive weak links causes an effective wash-out of the
spectral current peak structure as a result of the statistical averaging
over a continuous distribution of path lengths.

The elementary form of an individual ABS can be appreciated consid-
ering a weak link constituted by a single short and semi-transparent
conduction channel11. Here, the excitation spectrum obtained by the
solution of the Bogoliubov-de Gennes equation in a scattering-matrix
formalism shows the functional form:

Eτ(θ) = ±∆
√
1− τ sin2(θ/2) , (1.25)

where ∆, θ are respectively the BCS superconducting gap and the gauge-
invariant phase difference at the electrodes and 0 < τ 6 1 models

11 I. e., where the longitudinal and transverse dimensions are small with respect to both the
electron mean free path and the superconducting coherence length and the traversal time
is negligible with respect to  h/∆.
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the transmissivity of the channel. Since the CPR is proportional to the
derivative of the free energy F of the weak link with respect to the phase
difference, the supercurrent is

IS(θ) =
2π

Φ0

dF

dθ
(1.26)

=
π

2

τ∆

Φ0

sin θ√
1− τ sin2(θ/2)

tanh


∆

√
1− τ sin2(θ/2)

2kBT


 .

(1.27)

Figure 1.8 shows the energy dispersion (top panel) and corresponding
zero-temperature CPRs (bottom left panel) for ABSs characterized by
selected values of the transparency parameter τ. The magnitude scale of
the supercurrent at zero temperature is I0 ≡ πτ∆0/2Φ0. The extremal
values of the transparency range demonstrate two opposite paradigms
at low temperature. In the low-transparency limit (τ � 1, typical of
tunnel junctions) the energy dispersion of the ABS is basically flat;
the critical current amplitude is correspondingly suppressed with I0.
The CPR reduces to IS(θ) = I0 sin(θ), consistently with the behaviour
expected for weakly-coupled superconducting electrodes.

A gradual increase in transparency corresponds to wider amplitude
in the phase-dependent energy modulation as well as to the progressive
development of non-harmonicity in the CPR. Ultimately, in a perfectly
transparent conduction channel (τ = 1) the ground and excited ABS

branches become degenerate for θ = π, where the corresponding CPR is
discontinuous12 in the zero-temperature limit:

IS(θ) =





+2I0 sin(θ/2) 0 6 θ < π

0 θ = π

−2I0 sin(θ/2) π < θ 6 2π

. (1.28)

12 This singular behaviour, shown as a dashed line in the bottom left panel of fig. 1.8, is
resolved with either non-zero temperature or τ < 1, so it is never truly observed in
practical devices.
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Figure 1.8: Phase response of a single-channel ABS. The top panel shows the
phase-dependent energy spectrum; different traces are color-coded
to different values of channel transparency τ. The bottom left panel
shows the corresponding CPRs in the low-temperature limit. The
bottom right panel shows the thermal depenence of the critical
current values.
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The bottom right panel in fig. 1.8 shows the temperature dependence
of the critical current of the weak link, normalized with respect to I0.
Finite temperature affects both the value of the superconducting gap at
the electrodes and the relative population of the ground and excited ABS

branches. From the graphs it can be seen that, for sufficiently transparent
channels, the latter mechanism affects appreciably the critical current
even at low temperature values (T < Tc/3), where the ∆(T) dependence
is basically flat. On the other hand, independently of transparency, the
normalized CPRs tend to the harmonic Aslamazov-Larkin model [16,
22] in the vicinity of the critical temperature:

IS(θ)

I0
=

∆2(T)

2∆0kBT
sin θ ≈ 2.66

(
1−

T

Tc

)
sin θ , T → Tc . (1.29)

The single channel picture can be readily generalized for weak links
composed of several conduction channels, each characterized by a
specific transparency value τk. Equation (1.26) becomes:

IS(θ) =
2π

Φ0

∑

k

dEk(θ)

dθ
tanh

(
Ek(θ)

2kBT

)
, (1.30)

where Ek(θ) is the energy dispersion of the k-th ABS. Equation (1.30)
is the limiting form of eq. (1.24) for a spectral current derived from a
discrete set of ABSs.

The last sections concluding this chapter focus on two types of weak
link, oxide-barrier junctions and hybrid SN structures characterized by
clean intermetallic contacts. The theoretical results listed therein set a
specific reference for the understanding of individual circuit elements
employed in the devices presented in the following chapters.



31

Figure 1.9: Tilted (60 deg.) pseudocolor scanning electron micrograph of a detail
in a fabricated device. A 25 nm-thick Cu wire (red) is contacted to
a buried superconducting tunnel probe (blue) realized by a 15 nm-
thick oxidized Al film. The normal metal wire is proximized by the
clean contact with 150 nm-thick Al electrodes (yellow) forming a
SNS junction. The scale bar at the bottom left represents a horizontal
distance of 100 nm.

1.6 tunnel junctions

In circuit elements based on tunnel junctions charge transport is due
to quantum tunneling of carriers through a suitably thin insulating
barrier. The latter separates two metallic domains that can be either in
the superconducting or in the normal state, resulting in SIS, Normal-
metal, Insulator, Superconductor (NIS) and Normal-metal, Insulator,
Normal-metal (NIN) junction types. For applications in superconducting
electronics a typical choice is to realize overlap junctions where the in-
sulating barrier is provided by the controlled oxidation of an aluminum
layer. The latter may either coincide with a superconducting electrode
or, as it is common for devices designed to work at liquid helium tem-
perature, deposited as a nm-thick wetting layer over niobium-based
electrodes. The resulting weak links are stable against aging and re-
peated cooldowns, and their reliability makes them widely used as
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Josephson junctions in commercial low-temperature superconducting
electronic devices and sensors.

Supercurrent transport in SIS junction can be understood as the di-
rect tunneling of Cooper pairs across the thin insulating barrier. The
temperature-dependent CPR for this process has been derived analyti-
cally by Ambegaokar and Baratoff [23]:

IS(θ) =
π

2

∆GT
e

tanh
(

∆

2kBT

)
sin θ , (1.31)

where GT is the tunnel conductance. The Ambegaokar-Baratoff CPR is
evidently equivalent to the limit τ� 1 in eq. (1.27). In this analogy, the
tunnel junction is composed of N channels of low average transparency.
The tunnel conductance GT = Nτe/Φ0 = NτG0, where G0 = 2e2/h ≈
77.5µS is the quantum of conductance. It follows that the critical current
is suppressed with increasing temperature in accordance with the τ� 1

case in the bottom right panel of fig. 1.8 (blue trace), where its value is
approximately constant up to T ' Tc/3. Close to Tc the suppression of
the critical current is linear with temperature in accordance with the
Aslamazov-Larkin model13.

It is worth mentioning that the Ambegaokar-Baratoff model can be
generalized to include the case of a SIS junction composed of supercon-
ductors having different critical temperature values [16]. In this case,
adopting the Matsubara formalism,

IS(θ) =
2πGTkBT

e

∑

ωn>0

∆1∆2√(
ω2n +∆21

) (
ω2n +∆22

) sin θ , (1.32)

where ∆1, ∆2 are the superconducting gap values for each electrode and
ωn = πkBT(2n+ 1) represents the discrete set of Matsubara energies.
In general, the sum in eq. (1.32) has to be carried out numerically.
However, close to the lower critical temperature, the CPR converges to
the asymmetric Aslamazov-Larkin model:

IS(θ) =
π∆1∆2GT
4ekBT

sin θ , T → min [Tc1 , Tc2] . (1.33)

13 See eq. (1.29).
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Another important charge transport mechanism is given by the tun-
neling of quasiparticles at finite voltage bias. Under thermal equilibrium,
the quasiparticle current can be expressed by the transport integral

Iqp(V) =
GT
e

∫+∞

−∞
ρ1(E)ρ2(E+ eV) [g(E) − g(E+ eV)]dE , (1.34)

where ρ1,2(E) are the normalized quasiparticle DOSs in the left and
right electrodes and g(E) = 1/[1 + exp(E/kBT)] is the Fermi-Dirac
distribution function [24]. The left panel of fig. 1.10 shows an example
of the current-voltage characteristics resulting from eq. (1.34) in the
case of a NIS junction at zero and finite temperature. For the DOS of the
superconducting electrode a modified form of eq. (1.2) is often assumed:

ρS(E) =

∣∣∣∣∣<
[

E/∆+ iγ√
(E/∆+ iγ)2 − 1

]∣∣∣∣∣ , (1.35)

where the parameter γ� 1 semiempirically models a finite quasiparti-
cle lifetime introducing a small imaginary part in their energy [25]. As
a result, the singularities at E = ±∆ are lifted and a small subgap DOS

appears, in consistence with the experimental observation of non-zero
subgap conductance in SIS and NIS junctions [26]. The right panel of
fig. 1.10 shows the energy alignment diagram of the DOSs in the NIS

junction where the chemical potentials are offset by an applied voltage
V = ∆/e, corresponding to the onset of conduction at zero temperature.
Finite temperature values influence the population of electron-like and
hole-like quasiparticles, represented as blue and white areas in the
diagram, respectively.

Tunnel junctions provide a useful tool to directly sample the Local
Density Of States (LDOS) of a target metallic domain, provided the DOS

of the probing electrode is known. In particular, for a normal-metal
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Figure 1.10: Quasiparticle tunnel transport in a NIS junction. The left panel
shows the normalized current-voltage characteristic curves calcu-
lated from eq. (1.34) for temperature values T = 0, Tc/2 (blue and
green traces, respectively). The bias condition corresponding to the
onset of quasiparticle conduction at zero temperature (V = ∆/e) is
marked with a rightward facing triangle. The corresponding energy
alignment diagram is shown in the right panel, where electron-like
and hole-like quasiparticle populations are shown in the DOSs as
blue and white areas, respectively. Here the magnitude of thermal
excitations has been exaggerated for illustrative purposes.
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probe in the zero temperature limit, the conductance is found to be
proportional to the LDOS of the target electrode:

GN(V) = −
GT
e

∫+∞

−∞
ρ(E)

[
∂g(E+ eV)

∂V

]
dE (1.36)

≈ GT ρ(eV) , T → 0 . (1.37)

With increasing temperature the convolution kernel originating from
the electron distribution function14 broadens, progressively washing
out the fine details of ρ(E) from the measurable GN(V), as shown in
the green trace in the left panel of fig. 1.10.

Quasiparticle tunneling is the main conduction pathway for SIS junc-
tions biased so that the difference in chemical potentials of the elec-
trodes is greater than the sum of the superconducting gaps. The bottom
left panel in fig. 1.11 shows the calculated quasiparticle current for an
asymmetric SIS junction both at zero and non-zero temperature. The
surrounding panels show the aligned DOS diagrams at selected voltage
bias values. The top left panel corresponds to zero applied voltage,
leading to zero net tunneling current regardless of temperature. Moving
clockwise, the top right panel shows a condition in which the chemical
potential difference is equal to the difference in the superconducting
gaps of the electrodes. This regime, where the voltage bias is still in
the subgap range, results in a pronounced quasiparticle current peak
at finite temperature. This peak originates from a density imbalance
between the thermally-excited quasiparticle states in the left and right
electrodes, which is maximally evident when the singular features of
the BCS DOSs are aligned. This singularity-matching peak is associated
with a negative differential resistance region, and disappears at zero
temperature. Finally, the onset of the out-of-gap conduction regime is
shown in the bottom right panel of fig. 1.11 and corresponds to the
alignment of the electron-like states of the left electrode to the hole-like
states of the right electrode. The resulting conductance peak is sharper
than the corresponding feature found in the NIS case.

14 I. e., the term between square parentheses in eq. (1.36).
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Figure 1.11: Quasiparticle tunnel transport in an asymmetric SIS junction. The
bottom left panel shows the normalized current-voltage charac-
teristic curves calculated from eq. (1.34) for temperature values
T = 0, Tc,L/2 (blue and green traces, respectively). The surrounding
panels show energy alignment diagrams corresponding to relevant
biasing conditions marked by matching symbols in the horizontal
axis of the bottom left panel. In particular, a non-zero difference
in the values of the superconducting gap values between the elec-
trodes results in the appearence of a non-trivial conduction feature
(leftward-facing triangle) at finite temperature for eV = |∆L −∆R|.
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In summary, both superconducting and normal-metal tunnel probes
can be exploited to infer the LDOS of a mesoscopic conductor from their
quasiparticle current-voltage characteristic curves. Both in normal-metal
and superconducting probes, limiting the power dissipation induced
by quasiparticle tunneling15 can be enforced by choosing an optimal
barrier opacity during fabrication, hence moderating the magnitude of
the current in typical biasing conditions.

Normal-metal probes offer the convenience of direct proportionality
between the conductance and the target LDOS, but suffer from a grad-
ual loss of energy selectivity with increasing temperature, due to the
broadening of the electron energy distribution in the normal domain.
Conversely, the full reconstruction of a target LDOS from the quasiparti-
cle current data of a superconducting probe is in general a complicated
task, due to the singular shape of the probing BCS DOS. Nevertheless,
the presence of the superconducting gap is helpful in preserving the
energy selectivity when performing transport spectroscopy at temper-
ature values approaching the critical temperature, and is particularly
suitable for measuring the precise width of an energy gap in the target
LDOS.

Interaction with the photonic environment

We conclude this section by mentioning important effects related to the
interaction between tunneling events and the electromagnetic degrees
of freedom of the surrounding environment. As a consequence of the
nanoscopic design size16 of metallic tunnel probes, the resulting oxide
junctions are characterized by a capacitance C with typical values in the
fF range. This, coupled with the discrete nature of the tunneling process,
leads to the appearence of a junction charging energy Ec = e2/2C, which
may very well not be negligible with respect to the thermal energy scale

15 A requirement of interest, e. g., for ensuring no undesired local heating of the quasiparti-
cles during the operation of the probe.

16 This feature is often sought after to obtain a good degree of spatial selectivity in meso-
scopic transport experiments.
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in cryogenic environments17. The basic manifestation of the charging
energy is associated with the well known Coulomb blockade effect
in double barrier, quantum dot and single electron transistor systems,
where tunnel transport is suppressed at low temperatures for bias
voltages within the Coulomb gap Vg = e/C.

GT C

Z(ω)

V

Zt(ω)

Figure 1.12: Lumped element diagram describing the equivalent circuit for
the interaction between a tunnel junction characterized by non-
negligible charging energy and a generic environmental impedence
Z(ω). The physical junction is characterized by tunnel conductance
GT and capacitance C. The whole circuit is biased at voltage V by
an external ideal source. A dotted magenta box indicates the total
impedance Zt(ω) = 1/[iωC+Z−1(ω)], whose real part determines
the photon emission probability via eqs. (1.38) and (1.39).

In the case of a single low-capacitance tunnel junction the static
Coulomb blockade theory can be extended considering the junction
in series with a frequency dependent impedance describing a generic
dissipative environment [27]. This arrangement is shown in fig. 1.12

as a lumped-element electrical circuit, where the physical junction is
represented as the parallel of a capacitor and an ideal tunnel element.
Physically, the interaction between the degrees of freedom of the junc-
tion and the environment affects both quasiparticle and Cooper pair

17 For a junction characterized by a 1fF capacitance the charging energy is Ec ≈ 80µeV ;
this indicates that effects related to this energy scale are not washed out by thermal
fluctuations for temperature values below 1K.
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tunnel transport characteristics. These phenomena fall under the broad
denomination of dynamical Coulomb blockade effects.

A Hamiltonian representation of the coupling between the junction
and the dissipative environment can be performed by considering the
environment as a collection of LC oscillators, whose eigenfrequency
and inductance values are chosen so to reproduce a given environmen-
tal impedance. The tunneling rates are then derived by perturbative
expansion with respect to the matrix elements coupling the two leads.
From a physical point of view, the interaction between the tunneling
charge carriers and the environment can be fully described in terms
of the photon emission probability energy distribution, which can be
obtained as the Fourier transform:

P(ε) =
1

2π h

∫+∞

−∞
exp

[
J(t) +

i
 h
εt

]
dt , (1.38)

where J(t) is the charge carrier phase-phase correlation function, and ε
is the energy of the interacting photon (positive in case of emission and
negative for absorption).

In the zero-temperature limit no photons are present in the LC bath
and P(ε) is non-zero only for positive values of its argument. The inter-
action between the charge on the tunnel junction and the environment
is dependent on the value of the total inductance Zt(ω), shown in
fig. 1.12 as the parallel of the junction capacitor and the environmental
impedance Z(ω). The phase-phase correlation function can be obtained
from the dissipative part of the total inductance as

J(t) ≈ 2
∫+∞

0

dω

ω

<[Zt(ω)]

R0
[exp(−iωt) − 1] , T → 0 , (1.39)

where the value of the reference resistance R0 depends on the nature of
the charge carriers: when considering electron tunneling the scaling re-
sistance is equal to the von Klitzing constant R0 = RK = h/e2, whereas
for Cooper pairs R0 = RK/4.
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In case of electron carriers, the forward tunneling rate under Direct
Current (DC) voltage bias can be computed, for a given P(ε) in the Fermi
golden rule approximation:

Γ(V)+ =
GT
e2

∫∫
dE1dE2ρ1(E1)ρ2(E2 + eV)×

×g(E1) [1− g(E2 + eV)]P(E1 − E2) .
(1.40)

The total quasiparticle current is obtained by summing backwards and
forward rates, yielding:

Iqp(V) =
GT
e

∫∫
dE1dE2ρ1(E1)ρ2(E1 + E2)

1− exp(− eV
kBT

)

1− exp(− E2
kBT

)
×

× [g(E1) − g(E1 + E2)]P(eV − E2) ,

(1.41)

which appropriately reduces to eq. (1.34) in the Ec → 0 limit, where
P(ε)→ δ(ε).

In case of Cooper pair tunneling, the perturbative expansion of the
total Hamiltonian is performed with respect to the Josephson energy
Ej =  hIc/2e, which describes the amplitude of the coupling of the
superconducting condensates across the oxide barrier. In this case the
forward tunneling rate under DC voltage bias is directly proportional to
the photon emission probability:

Γ(V)+ =
π

2 h
E2j P(2eV) , (1.42)

yielding the total supercurrent

IS(V) =
πe
 h
E2j [P(2eV) − P(−2eV)] . (1.43)

Review [27] provides worked examples to reconstruct the P(ε) dis-
tribution from common environment impedances, including resistive,
inductive and transmission lines. For illustrative purposes, we report
the main results concerning the coupling between the tunnel junction
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Figure 1.13: Energy alignment diagrams (top panels) and calculated transport
characteristics (bottom panels) for Cooper pair and quasiparticle
transport in SIS and NIN tunnel junctions (left and right panels,
respectively) in inductive environments at zero temperature. The
coupling results in a single-mode resonator whose fundamental
frequency is ω0 and the photon emission probability P(ε) is Pois-
sonian with parameter ρ (see text). The resonating peaks in P(ε)
have been artificially broadened for clarity in the displayed charac-
teristics, where GT is the tunnel conductance and I0 = π∆GT /2e

is the Ambegaokar-Baratoff critical current amplitude. Voltage bias
conditions are indicated by matching symbols between the upper
and lower panels.
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and a single photonic mode, corresponding to an inductive environ-
ment. The total impedance Zt(ω) is given by the parallel of the junction
capacitance C and the environmental inductance L. The resulting res-
onator is characterized by a photonic fundamental mode with energy
 hω0 =  h/

√
LC. The zero-temperature photon emission probability is:

P(ε) = exp(−ρ)
∞∑

k=0

ρk

k!
δ(ε− k hω0) , (1.44)

where the parameter ρ for the Poissonian distribution is:

ρ =
Ec

 hω0

RK
R0

=
π

R0

√
L

C
. (1.45)

Figure 1.13 shows the effects of a moderate (ρ 6 1) single-mode
photonic coupling on Cooper pair tunneling in a SIS tunnel junction
(left panels) and on quasiparticle tunnel transport in a NIN junction
(right panels) at zero temperature. In the case of the SIS junction, net
transport of a Cooper pair at non-zero voltage is only possible when the
work done by the voltage source matches the energy transferred to the
photonic resonator. As a result, with increasing ρ, supercurrent peaks
appear at voltage values Vk = k hω0/2e. This situation is depicted in
the top left alignment diagram for the case of photon emission in the
fundamental mode (k=1). This specific voltage bias is marked with a
downwards facing triangle in the bottom left panel of fig. 1.13, where
the IS(V) characteristics are shown for different values of the coupling
parameter ρ.

An important difference between quasiparticle and Cooper pair tun-
neling is that in the former the charge carriers can tunnel to high energy
states and then relax non-radiatively towards the chemical potential
level in the sink electrode; on the contrary, Cooper condensates do
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not provide a similar kinetic buffer18. For a NIN tunnel junction in the
zero-temperature limit eq. (1.41) simplifies to

Iqp(V) =
GT
e

∫eV

0
dε(eV − ε)P(ε) , (1.46)

and differentiation with respect to voltage yields the differential con-
ductance

GN(V) = GT

(
1−

∫+∞

e|V |

P(ε)dε

)
. (1.47)

For quasiparticle transport, the photonic coupling induces a breakdown
of the total tunnel conductance in partial transport windows which
are cumulatively activated with increasing voltage bias. The full tunnel
conductance G(V) = GT is restored with V � Ec/e. The top right panel
of fig. 1.13 shows the energy alignment diagram in which electrons at
the chemical potential in the left electrode tunnel into the right electrode
either elastically or with the emission of one photon of energy ε. The
non-radiative relaxation to the chemical potential in the right electrode
is not explicitly pictured. This specific voltage bias is marked with an
upwards facing triangle in the bottom right panel of fig. 1.13, where the
differential conductance characteristics are shown for different values
of the coupling parameter ρ.

1.7 diffusive weak links

This section focuses on weak links where the supercurrent is mediated
by elements characterized by metallic-like conductance in the normal
state. Although this category also includes ballistic conductors, the
specific target of the forthcoming discussion is metallic conductors in
the diffusive limit, i. e., where the electronic elastic mean free path is
negligible compared with the spatial extent of the conductor; the latter

18 This is the fundamental reason for the direct proportionality in eq. (1.42) between Cooper
pair transfer rates and photon emission probability.
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is also assumed to be shorter than the phase-coherence length of the
charge carriers at low enough temperature.

Weak links based on diffusive domains in direct contact with the
superconducting electrodes are the high-transparency counterpart to
the tunnel barrier junctions analyzed in the previous section. They are
typically realized by sequential metallic thin film depositions under
high vacuum conditions to ensure the absence of oxide layers at the
interfaces between different metals. To reach a given critical current
value, due to the difference in the typical surface conductivity of tunnel
barriers with respect to clean metallic contacts, short weak links based
on the latter would require a smaller cross section, leading to stronger
supercurrent concentration compared to a SIS junction.

Due to the non-trivial nature of the weak link medium, supercurrent
transport in such structures is parametrically affected by geometrical
and intrinsic degrees of freedom beyond the normal-state conductance
of the metallic channel19. In a scattering-matrix picture, a diffusive
element is composed of an ensemble of electron propagation paths, each
characterized by a specific length and transparency. As anticipated in
section 1.5, the spectrum of the supercurrent-carrying standing modes is
broadened by propagation-dependent dephasing along each conduction
pathway; spectral observables are then expected to be parametrically
dependent from both the diffusive channel length and the average
traversal timescale.

The spatial character intrinsic in phase-coherent diffusion processes
is indeed reflected in the denomination “proximity effect”, the term
collectively describing phenomena related to the penetration of super-
conducting correlations in normal metal domains. In the following, the
basic phenomenology of proximized finite-length diffusive domains is
presented with specific focus on the phase response of the electronic
states inside the weak link and of the supercurrent transport associ-
ated to them. To this end, a quasi one-dimensional picture is assumed,

19 Moreover, the presence of intrinsic electron states in the channel provides the opportunity
for direct manipulation of their distribution function beyond equilibrium; exotic states
such as the π-shifted Josephson junction [28] have been demostrated in this way.
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meaning that no physical quantities are expected to vary along the di-
mensions transverse to the weak link axis. Additionally, the electrodes
are considered at the same electric potential and the electron states in
the diffusive channel are assumed to be in thermal equilibrium.

As a starting point in the understanding of the phenomenology of
diffusive weak links it is helpful to consider their short-length limit: the
diffusive point contact. In such a structure the effect of the diffusion is
simply to scramble the direction of electronic momenta [15, 16], without
introducing phase shifts due to negligible traversal time inside the weak
link. As a consequence, the diffusive point contact can be described as
a collection of zero-length ABSs whose transparency values are picked
from the arcsine distribution

ζ(τ) =
1

π
√
τ(1− τ)

, (1.48)

to model the effect of the momentum direction scrambling on trans-
mission probability. The top right and left panels of fig. 1.14, show
respectively the statistical distribution of τ values and a qualitative
depiction of its effect on the spectrum of ABSs; in the latter, green and
red shades indicate ground and excited branches, while the intensity of
the color shading is proportional to the local probability of occurrence
of the specific Eτ(θ).

The collective CPR can be obtained in consistence with eq. (1.30) as
the statistically weighted average of eq. (1.27)

IS(θ)

I0
=

∫1

0
dτζ(τ)

sin θ√
1− τ sin2 θ2

tanh


∆

√
1− τ sin2 θ2
2kBT


 , (1.49)

where the current magnitude scale I0 = π∆GN/2e is defined in analogy
with the nomenclature adopted for the single ABS and for tunnel junc-
tions; here the proper conductance reference scale is given by GN, the
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Figure 1.14: Phase and temperature response of the supercurrent in a diffusive
point contact. The top left panel shows the energy distribution of
the phase-modulated spectrum of an ensemble of ABSs; in the latter
the individual transparency values τ are sampled from the arcsine
distribution shown in the upper right panel. The lower left panel
shows the temperature-dependent CPRs obtained by integrating
eq. (1.49); here the temperature values span the 0 → Tc range in
even Tc/10 steps. The bottom right panel shows in matching colors
the temperature dependence of the maximal supercurrent of the
diffusive point contact. All current values are normalized to I0 =

π∆0GN/2e, where ∆0 is the zero-temperature superconducting
gap at the electrodes and GN is the normal state conductance of
the point contact.
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normal state conductance in the normal state. Evaluating the integral
leads to the following expression for the CPR

IS(θ)

I0
=

+∞∑

n=0

8kBT cos θ2√(
∆ cos θ2

)2
+ω2n

arctan


 ∆ sin θ2√(

∆ cos θ2
)2

+ω2n


 , (1.50)

where ωn = πkBT(2n+ 1) are the Matsubara frequencies. This limiting
form is usually referred to as the Kulik-Omelyanchuk dirty model [29],
after the authors who originally derived it. The resulting temperature-
dependent CPRs traces are shown in the bottom left panel of fig. 1.14;
the corresponding maximal supercurrent values as a function of temper-
ature are shown on the bottom right panel, with matching color coding
to indicate the temperature value. The shape of the CPR is markedly
non-harmonic except for relatively high temperature values; the nor-
malized critical current at zero temperature is slightly larger than the
corresponding value for a SIS junction.

Attempting the theoretical description of hybrid systems beyond the
short-length limit requires the adoption of a microscopic framework
able to treat spatially inhomogeneous superconductors. The solution
of the quantum many-body problem is typically attempted within a
Green’s function-based description in the Nambu particle-hole space
[30]. With these tools it is possible to derive the set of Gor’kov equations
[31–33] which incorporates the effects of the pair potential as well as
chemical inhomogeneities at the atomic scale.

In order to reach a numerically treatable complexity for the analysis of
mesoscopic weak links, the Gor’kov equations can be approximated to
a quasiclassical level based on the insight that the characteristic length
scales in superconductivity are much larger than the Fermi wavelength.
Equations resulting from this quasiclassical approximation are due to
Eilenberger [34] and they can be further simplified as a consequence of
the isotropy of diffusive processes in metallic weak links. The whole of
these approximations is known as the Usadel quasiclassical framework
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for the diffusive (or “dirty”) limit [35]. A comprehensive treatment on
the matter, also including non-equilibrium effects, can be found in [36].

Under the assumption of thermal equilibrium, the quasiclassical
treatment reduces to the following matrix equation for the retarded
Green’s function:

 hD∇
(
ĜR∇ĜR

)
=
[
−iετ̂3 + ∆̂ , ĜR

]
, (1.51)

where D is a coefficient quantifying the strength of diffusive processes,
τ̂3 is the third Pauli matrix in electron-hole space and

∆̂ =

(
0 ∆eiφ

∆e−iφ 0

)
. (1.52)

Here ∆ and φ are respectively the amplitude and the phase of the
superconducting order paramenter; they are real scalar functions of the
position in the diffusive channel.

A possible choice is to parametrize the ĜR matrix as

ĜR(ε, x) =

(
coshΘ i sinhΘeiX

i sinhΘe−iX − coshΘ

)
, (1.53)

where Θ(ε, x) and X(ε, x) are complex scalar functions of energy and
position along the diffusive channel (respectively, ε and x). The rationale
is that hyperbolic trigonometry allows describing a position-dependent
“rotation” between a normal and a BCS-like form for the ĜR matrix while
providing a means of natively incorporating the characteristic hyper-
bolic energy dependence of a BCS condensate. With this parametrization
choice eq. (1.51) yields the following equations:

 hD∂2xΘ = −2i [ ε sinhΘ−∆ cos(φ−X) coshΘ ] +

+  hD(∂xX)
2 sinh(Θ) cosh(Θ) ,

(1.54)

and

 hD∂xjE = −2i∆ sin(φ−X) sinhΘ , (1.55)
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where jE = −(∂xX) sinh2Θ. In analogy with eq. (1.1), inside the dif-
fusive domain with a non-zero effective interaction, the shape of the
[∆(x), φ(x) ] profile is determined by the integral equation

∆eiφ =
λ

4

∫+∞

−∞

[
sinhΘeiX + sinhΘeiX

]
tanh

(
ε

2kBT

)
dε , (1.56)

where the overline symbol indicates complex conjugation. This latter
equation is to be solved self-consistently with eqs. (1.54) and (1.55),
being dependent on both Θ and X.

Equations (1.54) to (1.56) define a second-order partial derivative
equation set, whose solution is in general attempted numerically. For the
problem to be well-defined, this set of equations has to be supplemented
by appropriate boundary conditions to model the interfaces between the
diffusive channel and the surrounding reservoirs. The parametrization
of the ĜR matrix takes the following form in an ideal reservoir:




ΘS = arctanh

(
∆
ε

)
, XS = φ superconducting reservoir,

ΘN = 0 , XN = 0 normal reservoir.
(1.57)

First-order boundary conditions, derived by Kupriyanov and Lukichev
[37], complement eq. (1.57) in the problem definition [16, 36]:




∓r sinhΘ∂xX = sin(X−X∓) sinhΘ∓

∓r∂xΘ = sinhΘ coshΘ∓ − cos(X−X∓) coshΘ sinhΘ∓
, (1.58)

where quantities marked by the ∓ symbol refer to the values taken
according to eq. (1.57) at the left (−) and right (+) contacts across the SN

interface; here the characteristic length scale of the spatial derivative of
Θ and X at the boundaries is r = Rb/R0, the barrier resistance normal-
ized to the channel resistance per unit length. Conditions in eq. (1.58)
are actually the low-transparency limiting form of more general bound-
ary conditions [38]. However, they have been found to be reasonably
predictive also in the high-transparency limit [39]. The impact of in-
terface resistivity and per-channel transparency in superconducting
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weak links based on diffusive elements has been extensively analyzed
[40, 41]. In the following, unless otherwise specified, we assume rigid
superconducting boundaries with ideal transparent interfaces (r ' 0).

A successful solution of the Usadel equations yields the physical
observables of interest. The local quasiparticle DOS can be directly
obtained from the real part of the first diagonal element in ĜR (the
normal component):

ρ(ε, x, θ) = < [ coshΘ ] . (1.59)

Notably, for a bulk superconductor Θ = arctanh(∆/ε) and eq. (1.59)
identically yields eq. (1.2). On the other hand, the off-diagonal ele-
ments in eq. (1.53) (the anomalous component) determine the energy
distribution of supercurrent-carrying states. The spectral current is
the imaginary part of jE, introduced in eq. (1.55) in its specific [Θ, X ]

parametrization form. In its general form, the spectral current is defined
as:

Jsp = = [ jE ] =
1

4
Tr
[
τ̂3

(
ĜR∇ĜR − ĜA∇ĜA

)]
, (1.60)

where ĜA = −τ̂3(ĜR)
†τ̂3 is the matrix representation of the advanced

Green’s function. Equation (1.60) explicits the balance between for-
ward and backward supercurrent transport. The CPR for a diffusive
superconducting weak link can then be calculated as

IS(θ) = −
GN
2e

∫
Jsp(ε) tanh

(
ε

2kBT

)
dε

=
GN
2e

∫
=
[
(∂xX) sinh2Θ

]
tanh

(
ε

2kBT

)
dε .

(1.61)

Here, for a diffusive channel of length L, the value of the integral is
dependent on the phase difference θ = φ(L) −φ(0) and, although not
immediately evident from the form of the integral20, is constant along
the x variable as a consequence of current conservation.

20 With the exception of proximized normal metal, in which the ∂xjE = 0 by virtue of
eq. (1.55), being ∆ = 0.
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In the following and throughout the rest of the thesis, numerical
solutions to the Usadel equations, as well as the relative physical ob-
servables, have been obtained with the open-source usadel1 software
package [42].

Normal-metal diffusive channel

Applying the Usadel framework to the analysis of SNS systems is impor-
tant for the understanding of the interplay between the superconducting
and diffusive dynamics. To this end, a key observation is that the coeffi-
cients in eq. (1.51) fix a natural energy scale for the diffusive process:
the Thouless energy. This quantity is defined as ETh =  hD/L2, where L
is the length of the diffusive channel21.

On the other hand, the obviously natural energy scale for supercon-
ducting phenomena is the value of the superconducting gap. Since for
a normal metal domain one can assume λ = 0, eq. (1.56) is trivially sat-
isfied with an identically zero ∆(x) profile inside the diffusive channel.
As a consequence, all ∆-proportional terms disappear from eqs. (1.54)
and (1.55). The superconducting energy scale only manifests itself at the
electrode boundaries, where the Θ, X functions and their first spatial
derivatives are constrained to link to their bulk superconducting forms.

Figure 1.15 shows the quasiparticle LDOSs obtained from the nu-
merical solutions of the Usadel equations for three SNS weak links of
increasing length in the zero-temperature limit. The LDOS shown in
the top left panel corresponds to the case of ETh = ∆0, where ∆0 is
the zero-temperature superconducting gap in the electrodes. From the
colormap it can be seen that inside the channel the width of the gap
in the quasiparticle excitation spectrum is only slightly perturbed with
respect to the superconducting electrodes; this corresponds to an ef-
fectively short diffusive channel. The top right panel corresponds to an

21 For typical metallic thin films, D takes values in the range 1− 100 cm2/s; the corre-
sponding ETh ∈ 1− 1000µeV for lengths of practical mesoscopic interest.
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Figure 1.15: The colormap plots represent the normalized zero-temperature
LDOS ρ(x, ε) inside proximized normal weak links with linearly
increasing length (top left, top right and bottom colormaps), cor-
responding to short, intermediate and long regimes. The width of
each colormap panel is approximately proportional to the corre-
sponding channel length value. The spatial coordinate x (horizontal
colormap axes) is shown as normalized with respect to the coher-
ence length ξD =

√
 hD/∆0, where ∆0 is the zero-temperature

superconducting gap at the electrodes. The latter quantity also pro-
vides the normalization factor for the energy coordinate ε (vertical
colormap axes). Zero phase bias is applied at the electrodes (θ = 0).
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intermediate-length channel, with ETh = ∆0/4; in this case, the spatial
character of the diffusive dynamics can be appreciated from the shape
of the quasiparticle LDOS. In the latter, the extent of the gap is halved
with respect to the electrodes. Finally, the long regime is illustrated by
the bottom panel, where ETh = ∆0/9. In this case the shape of the
corresponding quasiparticle excitation spectrum is severely affected,
and its energy gap is furtherly suppressed.

Overall these results illustrate that the impact of diffusive dynamics
on the spectral properties of the proximized system can be quantified
by the value of the ∆0/ETh ratio. A corresponding diffusive coherence
length, defined as ξD =

√
 hD/∆0, describes the spatial extent of the

penetration of superconducting correlations inside the normal metal
domain. Consequently, diffusive SNS weak links are classified in terms
of their normalized length l = L/ξD =

√
∆0/ETh.

Beside length, the LDOS of a proximized weak link is affected by
the superconducting phase difference enforced at its boundaries. This
phase-driven modulation is shown in fig. 1.16 for the short, intermediate
and long regimes described above (respectively, top, middle and bottom
panels). Each plot shows the shape of the quasiparticle LDOS in the
central part of the diffusive normal domain as a function of the applied
phase difference. As the latter is increased from θ = 0 to θ = π the
corresponding ρ(ε) is modified resulting in a progressive suppression
of its energy gap. Notably, all proximized systems revert to a constant
quasiparticle DOS in their center for θ = π, independently of their length.

A non-zero phase gradient along the diffusive wire is associated with
a finite supercurrent. Evaluation of eq. (1.61) in the zero temperature
limit yields the normalized CPRs shown in the left panel fig. 1.17 for
SNS weak links of different normalized lengths. All the curves are non-
harmonic, and the critical current values Ic are quickly suppressed with
increasing length. The latter property is due to the fact that in the long
SNS regime the Thouless energy replaces ∆0 as the characteristic scale
for the eIcRN product.

The right panel of fig. 1.17 shows the temperature dependence of
the normalized critical current of the SNS weak links. It can be noted
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Figure 1.17: The left and right panels show respectively the zero-temperature
CPRs and the temperature dependence of the critical current in SNS

weak links of normalized length l = 0, 1, 2, 3, 5. The zero-length
limit, corresponding to the diffusive point contact, is shown as a
dotted line. All current values are normalized to I0 = π∆0GN/2e,
in analogy with the nomenclature adopted for tunnel-type junc-
tions.

that while short weak links show an almost linear suppression of their
critical current with temperature, the long diffusive regime is instead
characterized by an exponential damping. The latter is consistent with
the following analytical model [43], valid in the ETh � kBT < ∆ limit.

Ic(T) =
32

3+ 2
√
2

ETh
eRN

√(
2πkBT

ETh

)3
exp

(
−

√
2πkBT

ETh

)
, (1.62)
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where T is the electron temperature in the proximized normal do-
main22. The exponential suppression is parametrized by the ratio L/ξT ,
where ξT =

√
 hD/2πkBT is the thermal diffusive coherence length.

Equation (1.62) is actually the first term of the Matsubara summation

Ic(T) =
64πkBT

eRN

+∞∑

n=0

√
2ωn
ETh

∆2 exp
(
−
√
2ωn
ETh

)

[
ωn +Ωn +

√
2(Ω2n +Ωnωn)

]2 , (1.63)

where ωn = πkBT(2n+ 1) and Ωn =
√
∆2 +ω2n. This extended form

provides an appropriate model for the temperature dependence of
the critical current for SNS weak links when ETh ' ∆ � kBT , which
is the case, e. g., when approaching the critical temperature of the
superconducting electrodes [43]. In this case the full evaluation of the
Matsubara summation is required to reproduce the linear collapse of
the critical current in the vicinity of the superconducting-to-normal
transition.

Superconducting diffusive channel

We conclude both this section and this chapter by extending the analysis
of diffusive weak links to superconducting channels. This entails using
the open-source usadel1 software package to solve the Usadel equa-
tions assuming λ > 0 inside the diffusive channel. As a consequence
of the self-consistency eq. (1.56), a non-zero superconducting order
parameter is present all along the channel, while its boundary values
are enforced by the superconducting electrodes. In the following we
present results corresponding to an identical λ (i. e., identical BCS critical
temperature) between the electrodes and the diffusive channel. The
boundary interfaces are assumed to be ideally rigid and transparent.

22 Note that at sub-Kelvin temperature the latter quantity need not coincide with the bath
temperature or with the quasiparticle temperature in the superconducting electrodes, due
respectively to the low-temperature suppression of the electron-phonon coupling and to
the negligible thermal conductance of superconducting contacts.
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In analogy with the SNS case, diffusive SSS weak links can be classified
according to their normalized length [15, 16]. In the short regime, physi-
cal observables are dominated by the electrodes. This case is illustrated
in fig. 1.18 for a SSS weak link of unit length in the zero temperature
limit.

In the figure, the top left panel shows the spatial dependence of the
absolute value of the order paramenter; here different curves corre-
spond to the bias points marked in the CPR presented in the top right
panel. The bottom panel shows the quasiparticle LDOS in the center of
the superconducting wire for the same biasing conditions. Dark blue
colors correspond to the linear phase-response regime, close to the
θ = 0 CPR node; in this case the absolute value of the order parameter
is approximately constant and the supercurrent is directly proportional
to the gradient of the phase. On the other hand, close to the θ = π

node (green curves), the collapse of both the order paramenter and the
supercurrent is accompanied by the quasiparticle LDOS reverting to the
normal-state form. Overall, the shape of the CPR is barely different from
the zero-length limit represented by eq. (1.50); in the present case, how-
ever, the weak link itself hosts an actual superconducting condensate
whose quasiparticle LDOS is BCS-like, with an energy gap which is fully
modulated by the phase difference applied at the electrodes.

In the long limit the intrinsic superconducting properties of the dif-
fusive wire are expected to take over with respect to the electrodes.
When this is the case, multiple solutions of the Usadel equations may
be compatible with the applied boundary constraints, namely the phase
difference at the electrodes. Still, a one-to-one mapping between phys-
ical observables and the curvilinear coordinate spanning the locus of
the CPR can be found.

The transition between the short and the long regime is illustrated
by fig. 1.19. Here, the left and right panels show, respectively, the zero-
temperature CPRs and the temperature dependence of the normalized
critical current for SSS weak links of different normalized lengths. It
can be noted that the transition to the long regime is characterized
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Figure 1.18: The top left, top right and bottom panels show the phase-driven
modulation of, respectively, the self-consistent ∆(x) profile, the CPR

and the LDOS in the center of a short (l = 1) SSS weak link in the
zero-temperature limit. In both top left and bottom panels, different
curves refer in matching colors to the points marked on the CPR

curve shown in the top right panel.
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Figure 1.19: The left and right panels show respectively the zero-temperature
CPRs and the temperature dependence of the critical current in SSS

weak links of normalized length l = 0, 1, 2, 3, 5. The zero-length
limit, corresponding to the diffusive point contact, is shown as a
dotted line. All current values are normalized to I0 = π∆0GN/2e,
in analogy with the nomenclature adopted for tunnel-type junc-
tions.

by increasing values of the normalized critical current23, while the
normalized Josephson inductance24 in the linear phase-response regime
(θ ≈ 0) is independent of the wire length, being equivalent to the
intrinsic kinetic inductance per unit length.

The results for a long (normalized length l = 5) superconducting wire
are shown for the zero-temperature limit in fig. 1.20. The anomalous
CPR locus shown in the top right panel displays the skewing distor-

23 This is due to the fact that for long wires the critical current for the wire will converge to
its intrinsic value, while the normalization constant I0, proportional to the normal state
conductance, will decrease with increasing wire length.

24 I. e., the reciprocal of the derivative of the normalized CPR.
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Figure 1.20: The top left, top right and bottom panels show the phase-driven
modulation of, respectively, the self-consistent ∆(x) profile, the CPR

and the LDOS in the center of a long (l = 5) SSS weak link in the
zero-temperature limit. In both top left and bottom panels, different
curves refer in matching colors to the points marked on the CPR

curve shown in the top right panel.
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tion typical of the long regime. The top left and bottom panels show
respectively the spatial dependence of the absolute value of the order
parameter and the quasiparticle LDOS in the middle of the wire for the
bias conditions marked in the CPR locus. It can be appreciated that
due to the skewing a phase difference θ > π can be established by
current biasing the wire close to its critical current. However, the locus
branch between this point and the θ = π node is inaccessible both by
current and phase biasing techniques. The LDOS curves shown in the
bottom panel are markedly different from their almost-BCS counterparts
of fig. 1.18. They have been experimentally characterized by means of
transport spectroscopy in [44], where the distortion of the singularity
peaks at the edge of the gap as well as its suppression is proven to
be a consequence of the increasing value of the spatial gradient of the
superconducting phase.

For all weak link types considered in this chapter (ballistic ABSs,
tunnel junctions, diffusive systems) non-zero temperature values affect
the thermal balance of forward and backwards supercurrent transport
channels25 that determine the CPR. However, in SSS weak links thermal
excitation also plays a direct role in the spectral equations, namely in
the self-consistency eq. (1.56).

For a superconducting wire in the long regime a sufficient increase
in temperature can revert the anomalous CPR locus to a single-valued
functional IS(θ) dependence. This can be appreciated in the left panel
of fig. 1.21, which shows the evolution of CPR loci with increasing tem-
perature for a SSS weak link of normalized length l = 5. The actual
temperature marking the transition between anomalous and single-
valued CPR can be discovered by monitoring the evolution of the nor-
malized inductance at the θ = π node. The latter quantity is defined
as Mπ = I0(dIS/dθ)

−1, and its thermal evolution is shown in the right
panel of fig. 1.21, where a star-shaped marker at Mπ = 0 indicates the
transition. The latter occurs for T ≈ 0.7 Tc for the l = 5 SSS weak link.

25 In fact, eqs. (1.27), (1.30), (1.31), (1.49) and (1.61) implement the specific form of eq. (1.24)
for each weak link type.
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Figure 1.21: The left panel shows the temperature-driven transition from multi-
valued to single-valued CPR for a long (l = 5) SSS weak link. The
plotted CPR curves are relative to temperature values spanning
the 0 → Tc range in even Tc/10 steps. The right panel shows the
corresponding temperature dependence of the normalized induc-
tance Mπ = I0(dIS/dθ)

−1, evaluated at the π-node of the CPR. A
star-shaped marker at Mπ = 0 indicates the transition between
the multi-valued and the single-valued regime. For the zero-length
limit, shown as a dotted line, the value of Mπ is negative in the
whole temperature range, consistently with the single-valuedness
of the corresponding CPR.
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Figure 1.22: The top left, top right and bottom panels show the phase-driven
modulation of, respectively, the self-consistent ∆(x) profile, the
CPR and the LDOS in the center of a long (l = 5) SSS weak link at
T = 0.7 Tc. In both top left and bottom panels, different curves refer
in matching colors to the points marked on the CPR curve shown
in the top right panel.
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Figure 1.22 shows results for the l = 5 SSS weak link at the quoted
reversal temperature for its CPR, shown in the top right panel. Direct
comparison with the corresponding zero-temperature results in fig. 1.20

indicates that the absolute value of the order parameter at the electrodes
is only slightly suppressed with respect to its zero-temperature value.
Similarly to the case of a short SSS weak link, spanning the applied phase
bias to θ = π induces the progressive and full closing of the energy gap
in the LDOS, accompanied by the collapse of the supercurrent towards
the π node of the CPR. On the other hand, traces of the long diffusive
nature of the weak link can be appreciated in the broadened peaks at
the gap edges as well as the appearence of additional DOS features for
ε ≈ ±∆.



2E X P E R I M E N TA L P R O T O C O L S

2.1 sample fabrication

The devices presented in this thesis consist in micro-structured networks
of metallic domains, whose interfaces can be either clean galvanic con-
tacts or metal-oxide barriers. They have been realized by directional thin-
film deposition through an Electron-Beam Lithography (EBL)-defined
mask (or stencil) suspended at a fixed distance above the substrate, a
nanofabrication technique known as suspended mask lithography [45],
whose basic steps are illustrated in fig. 2.1.

The target for the lithography is prepared by spin-coating a silicon
substrate1 with a positive-tone EBL resist bi-layer. The latter consists in a
Methyl MethAcrylate (MMA)-MethAcrylic Acid (MAA) copolymer spacer
layer topped by a conventional Poly-(Methyl MethAcrylate) (PMMA)
stencil layer. The following recipe has been found to reliably yield a
100nm-thick PMMA stencil and a 700nm-thick copolymer spacing layer.

1. Clean the wafer in acetone, rinse with IsoPropylic Alcohol (IPA),
blow-dry with nitrogen.

2. Pre-baking: 5min on the hotplate @ 120 ◦C, 2min cool-off

3. Spacer resist2 spin-coating: 1500 RPM for 90 s

4. Spacer curing: 15min on the hotplate @ 170 ◦C, 2min cool-off

5. Stencil resist3 spin-coating: 3500 RPM for 45 s

6. Stencil curing: 15min on the hotplate @ 170 ◦C, 2min cool-off

1 A 80mm Si-[100] wafer capped by a 250nm-thick thermally-grown SiO2 layer.
2 Microchem MMA(8.5)MAA Copolymer (13% in ethyl lactate)
3 Microchem 950-kD PMMA EBL resist (4% in anisole)
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The wafer is then cleaved in individual chips suitable for the subsequent
fabrication steps.

The electron exposure is performed by EBL-adapted field emission
Scanning Electron Microscope (SEM) columns4, where the electron beam
is accelerated to 30 keV and reaches typical beam waist values as low
as ≈ 5nm. Pattern generator software5 drives the deflection coils in
the SEM columns to expose the bi-layer according to the required dose
pattern. The copolymer layer is fully exposed by a dose of 150µC/cm2;
the stencil layer requires 400µC/cm2 to 700µC/cm2, depending on the
size of the patterned feature.

The resist development is performed in a 1:3 by weight solution of
Methyl IsoButyl Ketone (MIBK):IPA at 20 ◦C for 30 s, stopped in pure IPA.
The difference in exposure sensitivity for the two layers results in a
developed resist structure similar to the one shown in fig. 2.1a, where
the spacer layer is broadly cleared out under the sharp patterning of
the top stencil layer. The achievable linewidth resolution in patterning
the latter actually benefits from the distance of the substrate, in that
the low-energy secondary electrons backscattering from silicon diffuse
through the spacer resist layer.

After development the sample is blow-dried by a gentle nitrogen flow
and loaded in a custom ultra-high vacuum6 electron-beam evaporator
for thin film deposition. The evaporator is equipped with multiple
crucibles; the materials used for the devices presented in this thesis
are listed in table 2.1. For each film layer, a 8 kV electron gun heats the
contents of the appropriate crucible until evaporation. As a consequence
of the ultra-low pressure, the evaporated beam propagates ballistically
towards the patterned substrate, which is mounted on a tiltable sample
holder. The latter enables directional deposition: the EBL pattern is
cast onto the substrate with an angle-dependent offset, allowing for
the realization of the complete device without the need of multiple

4 Zeiss Merlin and Ultraplus models.
5 Nanometer Pattern Generation System (JC Nabity Lithography Systems); Elphy Quantum

(Raith GmbH).
6 Typical chamber pressure: 1nTorr, achieved with a continuous cryopumping (T ≈
13K).
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material growth rate purity notes

(Å/s)

V 10 2n Tc ≈ 4K
Al 2 5n Tc ≈ 1.2K to 1.6K

Al0.98Mn0.02 2 n/a normal metal [46]

Cu 2 5n normal metal

Ti 2 4n adhesivant

Table 2.1: Catalogue of the metallic thin film depositions used in this thesis.

lithographic steps. The typical layer thickness is in the 15nm to 200nm
range.

Superconducting-electrode tunnel junctions are obtained by exposing
the surface of an Al layer7 to a pure oxygen atmosphere in the oxidation
chamber for 300 s right after the evaporation; the thickness of the barrier,
and consequently the value of the tunnel resistance can be tuned by
controlling the oxygen pressure in the chamber8. The tunnel junction
is completed by evaporating an overlapped metallic layer to form the
second electrode.

A scanning electron micrograph of a detail in a fabricated device right
after the evaporation process is shown in fig. 2.2. The three-dimensional
structure of the bi-layer, including the undercut of the spacer layer and
the patterning in the metal-covered suspended mask are particularly
evident.

Beside the benefits related to its intrinsic self-alignment, the sus-
pended mask nanofabrication protocol results in high quality metal-to-
metal or metal-to-oxide contacts. This is granted by the sequential metal-

7 If a normal-metal electrode is required a Mn-doped Al layer is instead used (cfr. table 2.1).
8 Oxygen pressure values from 0.05Torr to 1Torr result in tunnel resistance-surface

product in the 0.1kΩµm2 to 10kΩµm2 range.
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lic depositions and oxidations being performed in controlled vacuum,
without the need of exposing the sample to the ambient atmosphere.

These advantages come at the expense of a more challenging mask
design process; in fact, care has to be taken in order to ensure the
mechanical stability of tightly-packed suspended parts and to prevent
unwanted short contacts between otherwise irrelevant deposition repli-
cas. The latter is typically avoided by sensible spacing of the designed
elements and by appropriately sculpting the undercut profile of the
spacer resist layer to intercept problematic replicas9.

Finally, the finite thickness of the stencil layer (typically 100nm) can
be exploited to trim the width of deposited metallic wires beyond the
linewidth resolution of the lithographic process. This can be achieved by
evaporating at a finite angle with the tilting axis parallel to the desired
wire; the resulting cast feature will be trimmed by the partial occlusion
of the slit patterned on the stencil, as seen by the impinging beam of
evaporated material.

After the deposition of all required layers, the fabrication is concluded
by removing the resist and the excess metal in a warm acetone bath,
followed by rinsing in IPA and blow-drying the substrate. The latter is
then glued with GE varnish to a ceramic Dual In Line (DIL) chip carrier
and wire bonded10 for the subsequent characterization.

9 This solution is pictured in fig. 2.1b, where the leftmost deposited feature does not come
into contact with the substrate, and will be washed away during the lift-off step.

10 Ultrasonic wedge bonding with 25µm-thick Al wire.
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(a) developed bi-layer (b) 1st deposition

(c) 2nd deposition (d) lift-off

Figure 2.1: Summary of suspended mask nanofabrication. The sequence (a-d)
represents, in section, the multi-stage deposition of metallic thin
films (purple, orange) on a substrate (gray) through a suspended
stencil mask (dark green). Different substrate offsets allow the real-
ization of devices of hybrid composition within a single lithographic
step.



70 2 experimental protocols

Figure 2.2: Tilted scanning electron micrograph of the suspended mask after
the evaporation process. The horizontal scale bar corresponds to
1µm.
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2.2 low-temperature measurements

The magneto-electric characterization of the devices presented in this
thesis has been performed in two cryogenic Oxford Instrument setups:
a pumped 3He dewar insert (model Heliox) and a cryofree dilution
refrigerator (model Triton 200).

Heliox setup

This refrigerator is designed to operate as a brass vacuum can insert
for 75 L liquid helium dewars. During operation, the primary cooling
mechanism consists in the forced evaporation of liquid helium from the
1K pot, a small vessel located inside the vacuum can of the insert. This
element is continuously replenished by a capillary feed line dipped in
the dewar and is able to reach temperature values as low as 1.2K.

The insert is equipped with a sealed 3He-filled circuit, composed of a
tank, a charcoal sorption pump, a condensing neck and a 3He pot vessel
in thermal contact with the sample space. After the initial cool-down
of the insert, the sorption pump is electrically heated to 30K, releasing
3He gas; at the same time the primary cooling power of the 1K pot is
exploited in the condensing neck to liquefy the 3He which then collects
by gravity in the 3He pot.

After all the 3He has been condensed (fig. 2.3), the heating of the
sorption pump is deactivated. This initiates the forced evaporation of
the contents of the 3He pot, lowering the sample space temperature to
240mK. For typical heat loads, up to 60h of uninterrupted measure-
ments at base temperature are possible before the 3He pot is completely
depleted by the sorption pump. The overall liquid helium consumption
from the dewar averages at approximately 6 L/d.

A resistance bridge monitoring the resistance variation of a calibrated
ruthenium oxide sensor allows to measure the temperature of the
sample. The latter can be stabilized in the 0.25K to 2K range by a closed-
loop Proportional, Integral and Derivative (PID) controller operating on
a resistive heater on the 3He pot. A magnetic field up to 20mT can be
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Figure 2.3: Functional schematic of the Heliox refrigerator. The latter is repre-
sented after a successful condensation of 3He in the 3He pot.

applied to the sample space by a custom-built superconducting magnet
threaded to the brass vacuum can of the insert.

The Heliox setup is equipped with 16 audio-band measurement lines
connecting a Bayonet Neill–Concelman (BNC) breakout box to a 16-pin
DIL chip socket with conventional cryogenic loom wiring. The latter
is thermalized by mechanical clamping at the 1K pot level; the lines
are filtered by a two-pole RC stage11 on copper-lined Printed Circuit

11 C = 47nF, R = 510Ω
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Board (PCB) thermalized at the 3He pot. Shielding from external Radio
Frequency (RF) sources is provided by π-filters in the breakout box.
Sample-level RF shielding is ensured by a copper Faraday cage with
pass-through LC π-filters12 enclosing the DIL socket.

Triton 200 setup

This continuous-cycle refrigerator, proposed [11, 47] by H. London in
1962, bases its operation on the endothermic character of the forced
diffusion of 3He atoms across the physical interface between a 3He-rich
phase and a 3He-poor phase in a 3He/4He mixture. The interface occurs
as a consequence of the spontaneous phase segregation of sufficiently
rich 3He/4He mixtures at temperature values lower than the tricritical
point13.

Throughout the circuit (fig. 2.4) the injected gas is progressively
thermalized to its cold counterflowing path by appropriate heat ex-
changers. This cooling mechanism is somewhat equivalent to the forced
evaporation of a cryogenic fluid; however, the minimum temperature of
operation that can be reached in practice is limited only by the total 3He
circulating rate and by the thermalization efficiency of the counterflow
exchangers. The sample space is thermalized to the mixing chamber.

The Triton 200 setup is able to reach a base temperature of approxi-
mately 15mK, with a cooling power of 200µW at 125mK. The primary
cooling mechanism (exploited for the liquefaction of the incoming 3He
flux) for this refrigerator is provided by a pulse tube cooler14. The latter
is a dual-stage cryocooler able to provide up to 1W of cooling power at
its 4K stage. The pulse-tube cryocooler is responsible for the cooling of
the 50K and 3K plates and relative radiation shields, and provides the
analogue to the pumped 1K-pot of the conventional “wet” dilution sys-
tems. Heat removal from the pulse-tube head to the heat exchangers of a
water-cooled compressor is mediated by a self-contained amount of he-

12 Oxley FLT/P/5000, 5nF
13 Approximately 0.87K.
14 Cryomech model PT410
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Figure 2.4: Functional schematic of a dry dilution refrigerator. The main cir-
cuit path for 3He consists in the sequence: (a) injection into the
impedance-limited lines; (b) liquefaction at the primary condensation
point; (c) entering the mixing chamber (rich phase); (d) endothermic
dilution inside the mixing chamber; (e) leaving the mixing chamber
(poor phase); (f) forced evaporation from the still; (g) pumping back
into injection.
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lium gas, so that its continued operation does not require replenishment
of cryoliquids, hence its “dry” or “cryofree” denomination.

A resistance bridge monitoring the resistance variation of a ruthe-
nium oxide sensor calibrated against a Johnson noise thermometer
allows to measure the temperature of the mixing chamber. The latter
can be stabilized up to 10K by a closed-loop PID controller operating
on a resistive heater on the mixing chamber. A magnetic field up to
400mT can be applied to the sample space by a custom-built super-
conducting magnet thermally anchored to the still stage shield. The
latter is energized by a precision current source (Keithley 2600 SMU)
for noise-sensitive magnetic characterization.

The Triton 200 setup is equipped (see fig. 2.5) with 24 audio-band
measurement lines connecting a BNC breakout box to a 24-pin DIL

chip socket with conventional cryogenic loom wiring. The latter is
thermalized by mechanical clamping at each plate of the refrigerator; the
lines are then filtered by a two-pole RC lowpass15 on copper-lined PCB

thermalized at the mixing chamber. Shielding from external RF sources
is provided by π-filters in the breakout box. Sample-level RF shielding
is ensured by a copper Faraday cage with pass-through LC π-filters16

in series with high-rejection wideband lowpass filters17 enclosing the
DIL socket.

2.3 low-frequency characterization

In the present work, physical observables of interests have been probed
by means of electrical characterization of the mesoscopic circuits ob-
tained by the nanofabrication process detailed at the beginning of the
present chapter. In particular, depending on the typical impedance of
the devices under test, transport characteristics have been determined in
either two-wire or four-wire probing setups. In both Triton and Heliox se-
tups, the signal lines connecting the sample space to room-temperature

15 C = 47nF, R = 1kΩ
16 Oxley SLT/P/5000, 5nF
17 Minicircuits VLFX-80.
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electronics are designed to attenuate the high-frequency thermal radi-
ation emitted by the latter, limiting the available signal bandwith to
approximately 1 kHz for low-impedance samples.

filtered line

filtered line filtered line

filtered line
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LI-75A
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ADC 1

ADC 2

HP 89410A
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Figure 2.5: Functional schematic of a 4-wire measurement in the Triton 200 setup.
Each signal line is filtered by a combination of lowpass filters: feed-
through LC, two-pole RC and high RF-rejecting multistage. In the
particular case represented, the output of two low-noise differential
preamplifiers (LI-75A) is digitized independently as the inputs of a
vector signal analyzer (HP 89410A) for subsequent characterization
of the spectral content of the signal.

Oxide-barrier junctions are typically characterized by tunnel resis-
tance in the 10 kΩ to 10MΩ range, and are thus suited to a two-wire
voltage-biased characterization. Commonly used programmable voltage
sources include Agilent HP 3245A, Stanford Research Systems SIM928,
Yokogawa GS200. Room-temperature transimpedance preamplification
(DL Instruments model 1211) provides the means for high-gain cur-
rent to voltage transduction. Lock-in amplifiers (Stanford Research
Systems SR830, NF Corporation LI-5640) have been used to record the
differential conductance as a function of the applied voltage bias.

The characterization of low-impedance loads such as SNS weak links
has been generally performed with a four-wire setup. The transport
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characteristics are obtained by recording the voltage drop across the
element as a function of the applied current bias. Low-noise room
temperature differential preamplification (NF Corporation LI-75A) is
used to boost the signal before digitization (Agilent 34470A). While
low-noise differential preamplifiers are characterized by high values of
common-mode noise rejection, their output is often affected by slow
drift, i. e., significant low-frequency 1/f noise. To counteract this noise
source, the current vs voltage curves were recorded via lock-in technique
by measuring the first harmonic of the voltage response to a DC current
bias chopped at a reference frequency significantly faster than the
corresponding 1/f “drift” timescale18.

Some of the devices considered in the present thesis can be operated
as magnetometers. For such applications, the noise-equivalent magnetic
flux resolution has been deduced from the spectral characterization of
the readout signal. One typical setup is represented in fig. 2.5, where
the voltage response of a SQUIPT magnetometer under fixed current
bias is amplified by two Low-Noise Amplifiers (LNAs) connected in
parallel. The output of each LNA is digitized independently at each
input Analog to Digital Converter (ADC) of a spectrum analyzer (HP
89410A), which computes both the Power Spectral Density (PSD) of each
channel as well as the Cross-correlated Spectral Density (CSD) between
the two. This characterization allows to distinguish the noise added by
the amplification (which is assumed uncorrelated between two different
battery-powered LNA units) from the spectral features (including the
background noise floor) wich are present before the amplification stage
and are completely correlated between the two signal pathways.

18 The low impedance under test allows for undistorted square-wave bias and detection
with reference frequency f ≈ 17Hz.
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3VA N A D I U M / C O P P E R M I C R O - S Q U I D

The Superconducting QUantum Interference Device (SQUID) is a widely
studied superconducting interferometer. Its typical structure (shown in
fig. 3.1) consists in a superconducting ring interrupted by two Joseph-
son junctions [12]. The combination of the Josephson effect [17] and
magnetic flux quantization [18, 19] in a closed superconducting loop
enforces the Φ0-periodic dependence of the phase difference values at
the weak links with respect to the magnetic flux Φ coupled to the ring.
The consequent modification of the circulating supercurrent can then
be inferred by the periodic suppression of the maximal value of the
crosswise supercurrent of the circuit constituted by the parallel of the
two Josephson junctions [48].

The physical picture described above is at the core of SQUID mag-
netometry. State-of-the-art SQUID system are typically able to resolve
noise-equivalent magnetic flux levels lower than 1µΦ0 per unit band-
width [49]. The vast majority of SQUID systems is based on SIS Josephson
junctions, typically realized with Nb-AlOx multilayer thin film deposi-
tion techniques. These junctions are technologically attractive due to the
comparatively high critical temperature and field of the Nb components,
coupled with the long-term stability of AlOx tunnel barriers. Whole-
wafer multilayer fabrication protocols directly result in high-throughput
production of nearly identical devices where the main SQUID loops
are integrated with inductively-coupled large-area input and feedback
coils [49].

On the other hand, as discussed in chapter 1, the Josephson effect
has been observed in a variety of weak links, well beyond SIS tunnel
junctions. Structures such as superconducting constrictions, normal
metal wires, ferromagnets, and even low-dimensional elements such
as graphene, 2D electron gas, semiconducting nanowires, carbon nan-
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otubes, atomic point contacts and quantum dots have been successfully
engineered to support Josephson-like supercurrent transport between
two Cooper condensates.

Here we consider the case of a SNS-based SQUID. The fundamental
difference, compared to its SIS counterpart, is that in diffusive SNS weak
links the transport of supercurrent depends non-trivially on the state
of the internal degrees of freedom of the normal-metal element, which
determine both the phase-dependent energy spectrum of ABSs and
its occupation function (see sections 1.5 and 1.7). As a significative
example, an exotic phenomenon such as the π-shifted junction1 has
been demonstrated by driving out of equilibrium the occupation of the
Andreev states of a normal metal weak link [28].

From a more practical standpoint, SNS Josephson elements are of
interest due to their intrinsic transparency, allowing the design of low-
impedance devices, well suited for wide-bandwidth, low-noise readout.
Furthermore, the negligible capacitance of typical SNS weak link geome-
tries renders them immune to capacitive hysteresis phenomena that
afflict SIS junctions. Finally, the high maximal current density supported
in SNS weak links makes them interesting candidates for realizing com-
pact Josephson junctions in interferometer geometries designed for
nanoscale magnetometry [50, 51].

In this chapter we present the realization of micrometer-sized SQUIDs

based on V/Cu/V SNS Josephson junctions. The rationale behind the
choice of vanadium as superconductor includes its sizeable values in
both critical field and critical temperature2 and the possibility of per-
forming the directional thin film deposition required for suspended
mask evaporation. A previous publication [52] showed that Josephson
coupling in V/Cu/V SNS junctions persists to temperature higher than
2K thanks to the combination of a wide superconducting gap in the
electrodes, a highly diffusive normal channel and favourably transpar-
ent galvanic contact between the two. The goal of this investigation is to

1 I. e., a Josephson junction whose free energy minimum occurs for a phase difference equal
to π.

2 Up to approximately 4K in thin films.
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build upon this foundation to realize compact SQUID devices dedicated
to magnetometry on the micrometer scale for subKelvin operation.

The chapter begins with the description of the supercurrent inter-
ferometry model for a SQUID based on Josephson junctions having
sinusoidal CPR. The model adopted accounts for non-ideal effects such
as asymmetry in the critical current values of the junctions and non-
negligible ring inductance [49]. Next, the interferometric performance
of the realized devices is evaluated in terms of the model. Finally the
magnetometric performance of the best device is characterized and com-
mented. The chapter is concluded by a summary of the main results.

3.1 simple model for non-ideal squid

The basic SQUID interferometer (see fig. 3.1) can be schematized as two
Josephson junctions connected in parallel. The CPR of the junctions is
assumed to be harmonic:

I1(θ1) = I◦(1−αI) sin θ1 , (3.1)

I2(θ2) = I◦(1+αI) sin θ2 , (3.2)

where Ik and θk respectively represent the supercurrent and the phase
difference for the k-th junction. Potential asymmetry between the critical
current values of the junctions is taken into account by the adimensional
αI parameter, whereas I◦ is the critical current per junction in the
symmetric limit.

In order to quantitatively describe the zero-voltage state, it is useful
to introduce the normalized crosswise and circulating supercurrent
(respectively i and j). Current conservation dictates:

i ≡ I1 + I2
I◦

= (1−αI) sin θ1 + (1+αI) sin θ2 , (3.3)

2j ≡ I1 − I2
I◦

= (1−αI) sin θ1 − (1+αI) sin θ2 . (3.4)
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Figure 3.1: Functional diagram of a SQUID element. In the non-dissipative state,
the DC current bias Ib applied crosswise to the element is carried by
the two Josephson junctions according to eq. (3.3). The possible val-
ues of the pair of phase differences θ1, θ2 satisfy eqs. (3.4) and (3.5),
and are parametrically dependent on the magnetic flux Φ applied
to the SQUID ring of inductance L.

The phase differences θ1 and θ2 are not mutually independent, due
to the constraint of flux quantization. With an applied magnetic flux Φ
coupled to the loop of the SQUID:

θ1 − θ2 =
2π

Φ0
(Φ−LI◦j) ≡ 2π

Φ

Φ0
−βLj . (3.5)

As elaborated in section 1.4, the presence of a finite loop inductance L,
results in a nonzero βL = 2πLI◦/Φ0, which here causes the coupling
between the equations describing circulating and crosswise supercur-
rent terms.

Generally, for a given value of Φ, there exists a range of values for
θ1, θ2 (and consequently i, j) that satisfy eqs. (3.3) to (3.5). We define
the positive and negative critical currents (I±c ) as the extremal values of
the crosswise supercurrent over all such constrained θ1 and θ2 pairs:

I+c (Φ) = I◦ max
θ1,θ2

i , (3.6)

I−c (Φ) = I◦ min
θ1,θ2

i . (3.7)
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When subjected to a fixed current bias whose value exceeds the critical
current, eqs. (3.3) to (3.5) cannot be simultaneously satisfied, and the
device switches to the dissipative state, developing a finite voltage
across its terminals. As a consequence, the phase difference of each
junction evolves with time according to the second Josephson relation3.

In the ideal symmetric SQUID (αI = 0, βL = 0) the value of the critical
current can be found with simple trigonometric manipulations, yielding:

I±c (Φ) = ±2I◦
∣∣∣∣cos

(
π
Φ

Φ0

)∣∣∣∣ . (3.8)

For generic values of the αI and βL parameters the functional I±c (Φ)

dependence must be numerically solved for. Figure 3.2 shows some
illustrative cases. Ideal behaviour is characterized by full suppression
of the critical current for Φ = (n+ 1/2)Φ0. As expected, the effect of an
asymmetry in the supercurrent amplitudes of the single junctions (non-
zero αI) results in the impossibility of achieving a complete suppression
of i when θ1−θ2 = π. A finite inductance in the ring causes a screening
effect on the applied flux: as a consequence even identical junctions can-
not be fully biased to a phase difference equal to π. The corresponding
I±c (Φ) trace shows non-zero critical current with a characteristic cusp
for Φ = (n+ 1/2)Φ0. Finally, in devices characterized by both finite
inductance and junction asymmetry, the combined non-idealities cause
a skewing of the I±c (Φ) curve. In this case, the critical current minima
are no longer located at Φ = (n+ 1/2)Φ0, and both I±c (−Φ) = I±c (Φ)

and I+c (Φ) = −I−c (Φ) symmetries are characteristically broken.

3 Semiclassical approaches such as the simple time-dependent modelization introduced in
section 1.3 may grant insight on the dynamics of Josephson junction networks, and have
been used extensively to aid the design of practical superconducting electronic devices.
It should be noted that a rigorous treatment of the time-dependent behaviour of such
circuits requires an appropriate characterization of the electromagnetic environment of
the junctions (up to sub-THz frequency range) in order to treat from first principles the
charge-carrier/photon interaction.
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Figure 3.2: Critical current dependence with respect to applied magnetic flux
for a two-junction SQUID in presence of junction asymmetry and
non-zero loop inductance. The ideal behaviour is shown as a blue
trace. Deviations from the ideal case are plotted as green and red
trace, respectively for non-zero asymmetry and non-zero inductance.
The magenta trace shows the combined effect of non-zero junction
asymmetry and loop inductance.
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3.2 interferometer design and characterization

Although immune to capacitive hysteresis in their transport character-
istics, current-biased SNS junctions may nevertheless suffer from hys-
teresis when switching from the supercurrent branch to a dissipative
voltage state. This phenomenon is known to originate from the over-
heating of the quasiparticles in the proximized metal [53]. The latter
can be observed at low temperature, when the suppressed efficiency
of the quasiparticle cooling mechanisms4 makes them unable to com-
pensate the heating induced by the Joule effect, present upon switching
to a non-zero voltage state. Limiting the negative impact of the thermal
hysteresis is the central challenge to address when designing magnetic
detectors based on diffusive weak links [54, 55].

In our approach to this problem, we fabricated SQUID devices in
which the SNS junctions are short yet resistive. In doing so, the typical
Joule power in the dissipative state is kept as low as possible, without
sacrificing a sizeable Thouless energy scale5 which is a prerequisite for
a pronounced voltage modulation of the SQUID. In practice, we find that
the latter requirement is satisfied by adopting copper weak links with
interelectrode spacing in the 250nm to 400nm range, corresponding
to Thouless energy values of several tens of µeV . At the same time,
the typical dissipated power upon switching can be limited to few pW

by reducing the cross-section of the SNS weak link to approximately
1000 (nm)2, a value well within the limits of EBL-based nanofabrication
techniques.

Figure 3.3 shows a scanning electron micrograph of a typical in-
terferometer, fabricated by standard suspended mask technique6. A
5nm-thick aluminium layer was first evaporated at 40◦ to ensure the
adhesion of subsequent layers, followed by a copper layer of 20nm
at normal incidence and a final vanadium layer of 150nm at 14◦. The
loop of the SQUID spans a surface of approximately 1.5 (µm)2. In the

4 Namely, outdiffusion of hot quasiparticles and electron-phonon coupling.
5 See section 1.7, page 51.
6 Section 2.1.
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V

I b

Figure 3.3: Tilted scanning electron micrograph showing a typical SQUID de-
vice in pseudocolors. Vanadium (green) and copper (red) films are
150nm and 20nm-thick, respectively. The standard setup for a 4-
wire measurement is also displayed in the superimposed scheme.
The inset in the top right corner shows a perpendicular zoomed
view of the SNS junctions.

following, we compare results obtained for devices characterized by
different normal-state resistance Rn, as summarized in table 3.1. The
copper nanojunctions of device A (shown in the inset in fig. 3.3) are
60nm and 370nm in width and length, respectively; on the other hand,
the junctions in devices B and C have been designed to be both shorter
and wider, resulting in lower values of normal-state resistance.

Figure 3.4 shows the 4-wire current-voltage characteristics from de-
vice A measured at the base temperature of the Heliox setup7. The
supercurrent branches are clearly modulated by the magnetic field
applied to the loop. A small residual hysteresis of thermal origin is

7 Base temperature 240mK; preamplifier offset drift eliminated via square-wave current
biasing (see sections 2.2 and 2.3).
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Figure 3.4: Magnetic flux-driven modulation of current-voltage characteristic
curves for device A. The electric potential difference was measured
in a 4-wire setup under fixed current bias Ib at cryostat bath tem-
perature of 240mK. The traces recorded for different values of the
applied magnetic flux Φ are horizontally offset for clarity.

present in the characteristics for which the critical current |Ic| > 1.5µA.
As the bias current Ib exceeds Ic, the system switches to a resistive
state developing a potential difference across the superconducting loop.
For large bias currents (Ib � Ic), the characteristic curve can be ap-
proximated by V ≈ IbRn/2, allowing the estimation of the average
junction’s normal-state resistance and Thouless energy values, reported
in table 3.1. Notably, we notice that the Thouless energy values are at
least one order of magnitude smaller than the expected superconduct-
ing gap in the vanadium electrodes, all the SNS junctions considered
here belong to the long diffusive limit.
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Figure 3.5: Magnetic flux dependence of the switching current (I±c ) for three
different V/Cu/V SQUIDs. Data point values (circles) have been
extracted from the switching events in the current-voltage charac-
teristics recorded at 240mK. The red line is the best fit of eqs. (3.3)
to (3.5) to experimental data. Values for the parameter estimates are
reported in table 3.1.
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device L/W/t Rn ETh I◦ αI βL

(nm) (Ω) (µeV) (µA)

A 370/060/20 14.0 27 0.97 0.04 0.44

B 300/150/20 3.6 51 4.10 0.03 0.13

C 280/150/20 3.0 65 3.43 0.06 0.09

Table 3.1: Summary of key parameters for the fabricated SQUID devices. Length,
width and thickness of each copper wire in the SNS junctions are re-
ported as L,W and t, respectively. The Thouless energy ETh =  hD/L2

has been deduced from the measured normal-state resistance Rn ac-
cording to the Einstein relation D = 1/(ρnνFe

2), where ρn is the
normal-state resistivity of the junction and νF = 1.56× 1047 J−1m−3

is the density of states at the Fermi level for copper. Optimal estimates
for I◦, αI and βL parameters have been obtained by fitting eqs. (3.3)
to (3.5) to the experimental I±c (Φ) data (fig. 3.5).

The supercurrent modulation capability of each SQUID interferometer
has been assessed by extracting the magnetic flux dependence of the
critical current from the switching events in the 4-wire current-voltage
characteristics. The resulting data, shown as circles in fig. 3.5, features
an almost complete modulation of the switching current for all three de-
vices. Nevertheless, minor asymmetries visible in the patterns indicate
the presence of non-idealities in the interferometric response. The latter
have been quantified by a least-square fit of the model represented by
eqs. (3.3) to (3.5) to the experimental data. The best fit for the model
is shown in fig. 3.5 as a red trace, while the corresponding parameter
estimates are listed in the last three columns of table 3.1.

At a glance, all three devices appear to be characterized by similar
values of the I◦ Rn product, with values ranging from 10µV to 15µV .
Similarly, the typical value of the relative critical current asymmetry
is 5%, which corresponds to the expected nanofabrication precision in
the definition of diffusive channels of given aspect ratio. Low-resistance
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devices B and C are associated with higher values of normal-state con-
ductivity, ETh, and I◦, but also with pronounced switching-retrapping
hysteresis at 240mK. The latter is only barely noticeable in the high-
resistance device A, thanks to the reduction in the dissipated power in
the voltage state. On the other hand, the supercurrent modulation of
device A is incomplete and appreciably skewed, with an anomalously
high value of the βL parameter.

3.3 magnetometric performance

SQUIDs can be used as magnetometers in the dissipative regime: by
biasing the superconducting ring with a constant current exceeding
the critical current of the interferometer, changes in magnetic flux can
be derived from the corresponding variations in the voltage difference
developed across the Josephson junctions.

The V(Φ) characteristics of device A (the best candidate) measured
at 240mK are shown in fig. 3.6 for different values of the bias current
Ib. They are periodic in flux with period Φ0, and have an approximate
sinusoidal functional form when Ib � 2I◦. In the opposite limit, the
characteristic curves show zero voltage difference for magnetic flux
values such that Ib < Ic(Φ), and finite V values after switching to
the dissipative regime8. In the switching points themselves the V(Φ)

characteristics display a strongly non-linear behaviour with high values
of the flux-to-voltage transfer function |∂V/∂Φ| which, in principle,
could allow for highly sensitive magnetometry. However, the switching
condition cannot be used as a stable working point since the associated
dynamic range becomes null as a consequence of the stochastic nature
of the switching.

The transfer function has been obtained by numerical differentiation
of the V(Φ, Ib) characteristics measured in high resolution scans of the
two-dimensional (Φ, Ib) space. In the resulting map, shown in fig. 3.7,
several ridges are evident from the color plot, the most pronounced

8 Typically, for flux ranges centered around Φ ≈ Φ0(n+ 1/2), where n is an integer
number.
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Figure 3.6: Magnetic flux dependence of the voltage across the SQUID (device
A) recorded at 240mK in a 4-wire setup. The traces are color-coded
to different values of the current bias Ib.

of which corresponds to the aforementioned switching locus. As one
moves down to lower values of the bias current Ib, the profile of the
switching ridge broadens and eventually forks into two different ridges
in which the transfer function reaches values approximately equal
to 0.3mV/Φ0. The optimal working point for maximizing sensitivity
corresponds to a bias current just above the splitting point for the two
ridges. In this point, indicated near the center of fig. 3.7 by a white
arrow, the transfer function obtains values as high as 0.45mV/Φ0 and
is constant over an effective dynamic range of several mΦ0.
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Figure 3.7: Map of the flux-to-voltage transfer function of device A obtained
by numerical differentiation of V(Φ, Ib) data. The optimal working
point for sensitive operation (i. e., with the transfer function showing
high values approximately constant over a suitable flux interval)
is indicated by a white arrow. Non-linearizable switching events
(diverging ∂V/∂Φ) are represented in yellow.

The noise performance of the magnetometers has been characterized
by measuring the PSD of the signal at the output of the preamplifier
stage9. The magnetic flux resolution of the SQUID is defined as:

ΦNS =

√
Sv

|∂V/∂Φ|WP
, (3.9)

where Sv is the PSD of the noise (in V2/Hz units) and |∂V/∂Φ|WP is the
absolute value of the flux-to-voltage transfer function at the selected

9 Battery-powered LI-75A (NF Corporation).
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working point. Upon setting the SQUID to its optimal working point,
the white noise level was detected to be

√
Sv = 1.25nV/

√
Hz at 1 kHz,

which is consistent with the manufacturer specifications of the input-
referred noise of the preamplifier; this value corresponds to a magnetic
flux resolution ΦNS ≈ 2.8µΦ0/

√
Hz at 1 kHz.

To test whether the noise limit originates from the preamplification
stage itself, two independent preamplifiers were connected in parallel to
the SQUID output10. The autocorrelated PSD from one preamplifier and
the crosscorrelated spectral density between the two preamplifiers have
been extracted and compared. The corresponding magnetic flux resolu-
tion spectra are presented in fig. 3.8. The autocorrelated spectrum shows
the aforementioned 2.8µΦ0/

√
Hz resolution level, whereas the cross-

correlated spectrum (the blue line in fig. 3.8) reaches a baseline value of
1.4µΦ0/

√
Hz at 1 kHz, thus demonstrating that the magnetic flux reso-

lution for the SQUIDs is here mostly limited by the room-temperature
preamplification stage. We stress that the reported magnetic flux sen-
sitivity levels have been measured without the aid of sophisticated
electronics or advanced readout schemes, and directly follow from the
intrinsic voltage response properties of SNS weak links.

On the other hand, the comparatively low level of the Thouless
energy in the fabricated Josephson junctions entails a noticeable decline
of their critical current values for increasing bath temperature. The
temperature dependence of the maximum value of the critical current
(i.e., that at Φ = 0) for device A is presented in the right panel of fig. 3.9.
Temperature has also been found to affect the maximum (stable) value
for the transfer function. This dependence is reported in the left panel
of fig. 3.9, demonstrating the possibility of operation at temperatures
up to 2K, albeit with exponentially reduced performance (suppression
of approximately one decade per K).

10 See also section 2.3, page 75.
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Figure 3.8: Magnetic flux resolution characterization for device A measured
at 240 mK and tuned to the optimal working point for maximum
sensitivity. The red and black lines represent (in magnetic flux units)
the spectrum obtained, respectively, from the autocorrelation of the
output of a single voltage preamplifier and from the crosscorrelation
of two parallel amplification channels. A small (100µΦ0 r.m.s.)
applied magnetic test signal appears as a peak in both spectra
at 11.7 Hz. The estimate of the white-noise equivalent background
is indicated by a blue line.
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Figure 3.9: Temperature dependence of, respectively, the maximal flux-to-
voltage transfer function value (left panel) and the maximum switch-
ing current (right panel) for device A. The lines are a guide to the
eye.

3.4 discussion

In summary, in the present chapter we demonstrated the feasibility of
using V/Cu/V SNS Josephson junctions to realize SQUID interferometers.
Magnetic flux modulation of supercurrent has been observed up to
2K. The fabricated interferometers proved unable to fully modulate
the supercurrent. While not directly affecting their performance as
magnetometers, this imperfection stems from both expected limitations
(i. e., a minimum αI dependent on fabrication symmetry) as well as
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flux screening effects that, for device A, are rather inconsistent with the
expected inductance of the interferometer ring11.

A judicious design of the SNS geometry allows to limit the negative
impact of switching-retrapping hysteresis of thermal origin. Our best
V/Cu interferometer, equipped with standard room-temperature DC

voltage preamplifiers, achieved favourable voltage responsivity figures,
ultimately leading to an intrinsic magnetic flux resolution limit of
1.4µΦ0/

√
Hz at 240mK. This performance level is comparable with

commercial SIS-based SQUID systems designed for 4K operation.
For the sake of fairness, it should be remarked that the steep sup-

pression of the transfer function figures with increasing temperature
suggests that our design of V/Cu/V SQUIDs is an attractive solution
mostly for bath temperature values lower than 500mK. Still, with their
non-negligible length, the investigated SNS weak links display relatively
low I◦Rn ' ETh product values. This directly reflects in the typical
power dissipated during operation: for example, at the optimal working
point for device A, the product IbV ≈ 5 pW. In comparison, for SQUIDs

devices based on SIS or Dayem bridge weak links I◦Rn ' ∆/e, so that
the magnitude of the dissipated power tends to be significantly higher.

11 The parameter estimates imply L ≈ 150pH for device A, while L ≈ 10pH for devices
B and C.
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In the previous chapter, we demonstrated the feasibility of using
V/Cu/V SNS weak links as the basis for the realization of microfabri-
cated SQUIDs. Quantitative analysis of magnetic response characteristics
showed that the relative difference of critical current in two nominally-
identical V/Cu/V weak links reaches values ≈ 5%. We attribute the
origin of this effect to limitations in the reproducibility of their fab-
rication, both in the geometry of the normal-metal diffusive resistors
and to their contact resistance with the superconducting electrodes. In
retrospect, considering the nanoscale transverse dimensions of the weak
links in our SQUID design, not much larger than the metallic grain size,
a 5% supercurrent asymmetry level is not unexpected.

While it is the specific application that ultimately dictates the maxi-
mum tolerable critical current asymmetry, it is still generally desirable
to develop and test methods to bring its effects to negligible levels.
In this respect, one proven strategy is to expand the geometry of the
interferometer to include an additional magnetic flux coupling loop.
In such a setup, the additional control parameter allows to compen-
sate for asymmetry in the critical current of the weak links composing
the interferometer. This strategy has been proven successful in bal-
ancing SIS devices intended for metrology, quantum computation and
low-temperature sensing [56].

In this chapter, we present the design and characterization of a
micrometer-sized double-loop SQUID based on V/Cu/V SNS Joseph-
son junctions. The chapter begins with a compact model introducing
the details of the asymmetry compensation effect. The magnetic modu-
lation of the critical current of the double-loop interferometer is derived
from the switching events recorded by scanning the current bias of
the device. This data, recorded for 22 temperature values in the 0.24K

99
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Figure 4.1: The top left panel shows a simplified supercurrent flow model in the
balanced double-loop SNS SQUID: the bias current is labeled Ib and
Φ1,2 represent magnetic fluxes linked to each loop; the critical cur-
rent values for the three Josephson junctions are labeled I◦,1,2. The
top right panel shows a tilted scanning electron micrograph of a re-
alized device in pseudocolors. The copper layer (red) is 25nm-thick;
the vanadium (green) electrodes contacting the copper nanowire are
80nm-thick near the nanowire and 160nm-thick farther away on the
loops as well as on the two terminals of the device. Each loop spans
a surface approximately equal to 1.18 (µm)2. The standard setup for
a 4-wire measurement is also displayed in the superimposed scheme.
The inset in the bottom left shows a perpendicular zoomed view of
the SNS junctions. In the latter, the average interelectrode spacing is
approximately 450nm, while the nanowire is 45nm-wide.
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to 1.5K range is fitted to the model, allowing for the extraction of the
temperature-dependent critical current values of the individual junctions.
Although in presence of relatively high junction asymmetry, we obtain
supercurrent relative suppression > 99% for optimal magnetic bias at
240mK.

4.1 two-parameter interferometry

In order to describe a double-loop SQUID interferometer, we adapt the
model presented in section 3.1 to the geometry summarized in the top
panel of fig. 4.1. The CPR of the three junctions is assumed sinusoidal; Ik
and θk represent the critical current and phase difference values for the
three Josephson junctions, k = ◦ , 1 , 2 referring to the central, left and
right weak link, respectively. Without loss of generality, we normalize
with respect to the central junction, so that the normalized crosswise
supercurrent is:

i = sin θ◦ + r1 sin θ1 + r2 sin θ2 , (4.1)

where r1 = I1/I◦ and r2 = I2/I◦ are the normalized critical currents of
the lateral junctions.

For the sake of simplicity we neglect the effect of the circulating
currents on the applied magnetic field so that the flux quantization
equations read:




θ1 = θ◦ + 2π

Φ1
Φ0

θ2 = θ◦ − 2π
Φ2
Φ0

, (4.2)

where Φ1 and Φ2 are the magnetic fluxes linked to each loop. In
analogy with eq. (3.6), combining eq. (4.1) with eq. (4.2) yields the
maximum bias current that can be sustained without dissipation by the
interferometer:

Ic(Φ1, Φ2) = I◦max
θ◦

[ sin θ◦ + r1 sin (θ◦ + 2πΦ1/Φ0)+

+ r2 sin (θ◦ − 2πΦ2/Φ0) ]
(4.3)
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A key point is that the critical current of the interferometer is given
by the magnitude of the vector sum of the critical currents of the three
Josephson junctions, with 2πΦ1/Φ0 and 2πΦ2/Φ0 playing the role of
angular displacements between the current vectors representing the
lateral junctions with respect to the central one. As such, one can in
principle achieve perfect critical current suppression at appropriate
Φ1, Φ2 values as long as I◦, I1, I2 satisfy the triangle inequality:

r1 + r2 > 1 > |r1 − r2| . (4.4)

Examples of interferometers having variable degrees of asymmetry
can be appreciated in the r1 − r2 representation shown in the top panel
of fig. 4.2. The most symmetric case, labeled with the letter A, corre-
sponds to an interferometer in which the three junctions have identical
critical current values (r1 = r2 = 1); the corresponding Ic(Φ1,Φ2) map,
shown as a color plot in the bottom panel of fig. 4.2 reaches maximum
values max(Ic) = 3 I◦. A reduced symmetry is represented by the case
in which the lateral junctions have identical critical current values, but
differ from the central junction (e.g., r1 = r2 = 0.5, labeled as C). Finally,
the generic asymmetric case is represented by r1 = 0.6, r2 = 0.9, values
which have been found to approximate the behaviour of the presented
device at temperature T = 0.24K; this case is labeled with the letter
B in fig. 4.2. All three cases fulfill eq. (4.4), thus they show complete
supercurrent suppression for appropriate Φ1, Φ2 coordinates; the latter
can be located with the aid of white lines in the bottom panel of fig. 4.2.
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Figure 4.2: The top panel shows the configuration diagram for possible real-
izations of the double-loop interferometer; parameters r1 = I1/I◦
and r2 = I2/I◦ define the amount of asymmetry in critical current
between the lateral and the central junctions; a fully symmetric
interferometer is obtained with r1 = r2 = 1 (A), a partially sym-
metric interferometer is obtained with r1 = r2 6= 1 (C). The device
presented (B) shows an asymmetric configuration at 0.24K, where
r1 6= r2 6= 1. The area shaded in red represents interferometers
which are un-balanceable due to excessive asymmetry; the inset
shows the temperature-dependent behaviour of the fabricated de-
vice. The bottom panel displays colormap plots of the critical current
for the three points labeled in the top panel as a function of magnetic
fluxes linked to each loop (Φ1, Φ2); local minima are encircled by
the white Ic/I◦ = 0.2 isoline as a visualization aid; the dotted white
line in the colormap relative to B highlights the flux pair values that
can be set by applying an external homogeneous magnetic field to
the slightly asymmetric loops of the presented device.



104 4 double-loop sns micro-squid

4.2 experimental characterization

The main panel in fig. 4.1 shows a scanning electron micrograph of the
realized double-loop interferometer. The latter is fabricated according to
the protocols detailed in section 2.1 with the deposition of four metallic
layers. Initially, a 5nm-thick adhesivant aluminium layer followed by a
25nm-thick copper film were deposited at normal incidence to obtain
the normal-metal parts; the superconducting body of the interferometer
was then realized by depositing two 80nm-thick vanadium films at
opposing angles (±17◦).

The fabricated interferometer features three weak links (as shown
in the zoomed-in view in the bottom left of fig. 4.1) consisting of a
diffusive normal-metal wire having width and thickness of 45nm and
25nm, respectively; the inter-electrode spacing between vanadium leads
is approximately equal to 450nm. Since the transverse extent of the
copper wire is less than the superconducting coherence length ξD at
each vanadium electrode, the local electronic density of states in the
normal metal is expected to have a minigap close to the superconducting
energy gap in the electrode itself1, so that the system can be pictured as
having three independent weak links.

The electron transport properties of the interferometer have been
characterized in the Heliox setup, for 22 bath temperature values in the
0.24K to 1.5K range. Current-vs-voltage curves have been estimated
with a lock-in amplifier under square-wave modulation2 of the current
bias Ib. The voltage response of the interferometer has been charac-
terized as a function of magnetic field applied orthogonally to the
substrate of the sample.

Figure 4.3 shows the characterization of the interferometer at base
temperature (T ≈ 240mK); the typical input-referred voltage noise for
this setup has been measured to be < 10nVrms. In this setup, magnetic
flux biasing is provided by magnetic field applied homogeneously
over the extent of the device, so that the flux coordinates Φ1 and Φ2

1 This has been shown in detail in section 1.7, page 51 and following.
2 See section 2.3.
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Figure 4.3: The bottom left panel shows a greyscale map of the voltage response
V recorded at 240mK as a function of both the biasing current
Ib and the loop-average applied magnetic flux Φ. The grey level
is proportional to

√
V (top right corner) in order to enhance the

visual contrast of the switching events. The top panel shows flux-to-
voltage characteristic curves extracted from V(Ib,Φ) data for fixed
values of the bias current (Ib = 0.1, 0.3, 0.5, 0.7, 0.9µA, marked
as horizontal lines in the map). The right panel shows current-to-
voltage characteristic curves extracted from V(Ib,Φ) data for fixed
values of the applied magnetic flux (Φ = 0.0, 0.50, 0.86, 1.26, 1.66Φ0,
marked as vertical lines in the map).
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are proportional to the applied field and can in principle differ as a
consequence of effective loop surface asymmetry:

Φ1,2 = (1±α)AeffB = (1±α)Φ , (4.5)

where Aeff is the average effective surface, and α is the effective loop
surface asymmetry coefficient.

In fig. 4.3, the magnetic field dependence is shown in terms of the
loop-average magnetic flux Φ = (Φ1 +Φ2)/2. The device shows re-
markably ohmic voltage response for applied flux Φ = 1.66Φ0, the
characteristic marked with a pink square in the bottom right panel of
fig. 4.3, corresponding to a measured resistance Rn ≈ 10.3Ω. Addi-
tionally, not exactly periodic modulation can be appreciated from the
voltage-vs-flux characteristics shown in the top panel of fig. 4.3, confirm-
ing a slight asymmetry in the effective areas of the two superconducting
loops.

4.3 model fitting

A quantitative assessment of the transport properties of the interfer-
ometer has been performed by extracting the Ic(Φ) values by fitting
differential resistance data with a sigmoid test function. This a posteriori
approach provides us with switching current data (shown for selected
temperature values in the left panels of fig. 4.4) which are associated
with an uncertainty derived from the quadrature propagation of the
intrinsic sigmoid width and the current bias discretization error. For
lower temperature values, the switching is sharp and the relative un-
certainty of the extraction process is limited by the latter term (≈ 6nA
over a 1µA scan); with increasing temperature the “intrinsic” sigmoid
width gradually takes over, reaching typical values of tens of nA at
T = 1.5K.

The extracted Ic(Φ, T) data have been fitted (bottom left panel of
fig. 4.4) using eqs. (4.3) and (4.5) as a model, yielding the estimate
for the loop surface asymmetry coefficient α = 0.028± 0.003. A direct
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junction ξ ETh T∗c

(µeV) (K)

I◦ 0.211± 0.002 15.1± 0.2 1.61± 0.01
I1 0.132± 0.003 13.7± 0.4 1.66± 0.03
I2 0.256± 0.004 10.2± 0.2 1.68± 0.03

Table 4.1: Parameter estimates for the ideality coefficient ξ, Thouless energy
ETh and effective critical temperature at the electrodes T∗c of the three
junctions of the interferometer obtained by fitting eq. (4.6) to Ik(T)
data (bottom right panel of fig. 4.4).

comparison between data points and model demonstrates the effec-
tiveness of the latter in describing our mesoscopic SNS interferometer,
particularly impressive considering the minimal amount of underly-
ing hypotheses. The fitting procedure provides a means of extracting
the temperature dependence of the critical current of each of the three
constituent Josephson junctions; this derived dataset is shown in the
bottom right panel of fig. 4.4.

The three junctions show markedly different Ik(T), both in terms of
the characteristic temperature scale of the supercurrent suppression
(dependent on the Thouless energy) and of the magnitude of the su-
percurrent (affected both by the Thouless energy and the normal-state
resistance of the SNS weak links). The analytical model of eq. (1.63),
whose validity in the high temperature regime has been specifically
verified for V/Cu/V junctions, can be slightly adapted to the form:

Ic(T) = ξ
64πkBT

eR

+∞∑

n=0

√
2ωn
ETh

∆2 exp
(
−
√
2ωn
ETh

)

[
ωn +Ωn +

√
2(Ω2n +Ωnωn)

]2 , (4.6)

where R = 3Rn ≈ 30.8Ω is the average normal-state resistance of a
single junction as extracted from current-vs-voltage measurements and
ξ accounts for non-ideality of the normal-superconductor interface. We
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Figure 4.4: The top left panel shows experimental critical current values for the
interferometer as a function of magnetic flux at different tempera-
tures (color coded). The critical current points have been extracted
from V(Ib,Φ) fixed-temperature datasets, an instance of which has
been presented in fig. 4.3; continuous lines joining data points have
been added as a visual aid. The bottom left panel shows the pro-
posed model fitted to data presented in the top left panel. The top
right panel shows the supercurrent suppression ratio achieved at
Φ/Φ0 = 1.66 for different values of temperature. Colored contin-
uous lines are derived from the optimal model presented in the
bottom left panel; data points calculated for the T = 0.24K dataset
are also displayed, along with a shaded area representing the resolu-
tion limit due to discretization in current scanning. The bottom right
panel shows the temperature dependence of the critical current for
each Josephson junction. The continuous lines represent the fitted
model for the critical current of long diffusive Josephson junctions
in the high-temperature regime.

assume ∆(T) dependence to be BCS-like (parametrically determined
by specifying an effective critical temperature T∗c for the vanadium
electrodes). This model has been used to fit Ik(T) data for each junction,
obtaining the parameter estimates reported in table 4.1.

4.4 discussion

Even though the interferometer has been designed to be fully symmet-
ric, the quantitative modeling procedure shows that deviations from
ideality inherent to the fabrication process resulted in junctions with
significantly different Ik(T), stemming from different ETh and ξ values.
The presence of measurably different Thouless energy scales introduces
a temperature dependence in the r1 − r2 parameters for the presented
device, as it can be appreciated in the inset of the top panel of fig. 4.2.
Nevertheless, under optimal flux biasing we were able to measure rel-
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ative supercurrent suppression > 99% at base temperature (top right
panel in fig. 4.4).

Although such observation was possible in homogeneous magnetic
field only thanks to the fortuitous match between loop asymmetry and
junction asymmetry, the fitness of the double-loop geometry as a means
to circumvent junction asymmetry in mesoscopic SNS-based devices
is still confirmed in a general sense. In fact, it is worth noting that
the additional degree of freedom granted by the second loop in the
geometry entails the possibility of having the interferometer respond
both to the homogeneous part and to the first spatial derivative of
the magnetic field (proportional to the sum and difference of Φ1 and
Φ2, respectively) on a micrometric length scale; moreover, the relative
strength of response can be tuned by designing the interferometer with
optimal r1 − r2 parameter values3, easily allowed by the flexibility of
the shadow-mask lithographic technique.

3 For example, robust gradiometric response is evident in the asymmetric interferometer
labeled as C in fig. 4.2.
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So far we have considered superconducting interferometer designs
where the phase bias of multiple SNS weak links induces the modula-
tion of the crosswise supercurrent through the interferometer, allowing
for a simple DC voltage readout under constant current bias. This con-
figuration is functionally equivalent to devices based on SIS weak links,
owing to the universality of the Josephson effect. On the other hand, the
SNS fingerprint is expected mostly in terms of a broader signal band-
width1 and with respect to the marked temperature dependence of the
critical current. The latter is a limiting factor in practical devices2, but it
is also at the heart of the quantitative characterization of the individual
component weak links of the double-loop interferometer presented in
the previous chapter.

Both in this and the following chapter, we consider an interferometer
where proximity effect plays an even more central role: the Super-
conducting QUantum Interference Proximity Transistor (SQUIPT) [57]. Its
basic design consists in a single diffusive nanoscopic metallic weak link
embedded in a micrometer-sized superconducting loop. The readout
mechanism is provided by a probe electrode in contact with the diffusive
weak link through a tunnel junction; the quasiparticle current through
the latter is in fact dependent on the LDOS spatially sampled by the
tunnel electrode, which in turn is a function of the phase bias acting
on the weak link itself. The external magnetic field threading the loop
fixes the phase difference across the weak link as a consequence of
flux quantization in the closed superconducting ring3; notably, different

1 Consequence of the negligible intrinsic RC cutoff for this type of weak link.
2 This is evident in the exponential suppression with increasing temperature of the magne-

tometric responsivity of the V/Cu SQUID, as shown in the left panel of fig. 3.9.
3 Chapter 1 presents a thorough review of the fundamental phenomena involved; see in

particular sections 1.4, 1.6 and 1.7.
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from a SQUID, the phase difference across the weak link can reach values
up to π.

Figure 5.1: Functional schematic of a SQUIPT device. In the schematic Φ is the
magnetic flux linked to the superconducting loop, I(Φ) and V(Φ) are
respectively the current flowing through and the voltage difference
across the device.

At a fundamental level, the current-voltage DC response of a SQUIPT

device provides spectroscopic information on the correlated phase-
biased electronic condensate. As a magnetometer, the SQUIPT is attractive
because of its fundamentally simple interferometer geometry, where,
e. g., weak link asymmetry cannot occur. At the same time, the infor-
mation on the weak link’s phase is conveniently carried by DC signals
developed across the probe electrode, with characteristic impedance
(given by typical tunnel resistance in the 10 kΩ to 1000 kΩ range) that
is perfectly suited to audio-band LNAs.

This chapter details the fabrication and characterization of SQUIPT

devices based on Al/Cu SNS weak links and intended for robust mag-
netometric performance. The chapter begins with a historical review of
the evolution of the SQUIPT geometry, along with a discussion of their
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characteristic operative issues, followed by a description of our design
approach. Next, we present experimental data showing proof of full
phase-induced minigap modulation in the proximized copper weak link.
The magnetometric performance figures are then assessed comparing
the magnetic responsivity with the signal noise recorded from the full
amplification chain. The chapter is concluded by a discussion on the
significance of the results obtained.

5.1 optimal squipt design

The earliest proof-of-concept realization [57] of a SQUIPT describes a
device based on a 1.5µm-long copper weak link, proximized by a
thin aluminum loop spanning a surface of approximately 120 (µm)2.
These figures result in the SNS junction being in the long diffusive limit,
entailing modest amplitude of the minigap at zero applied field (ap-
proximately equal to 10µeV , limited by the small value of the Thouless
energy). In subsequent attempts aimed at increasing the response of
the device up to its predicted intrinsic limits [58], the length of the
normal-metal wire has been reduced to bring the SNS junction in the
short regime, where the amplitude of the proximized minigap can ap-
proach that of the “parent” superconductor. These devices [59] succeed
in achieving sizeable induced minigap width (≈ 130µeV) but suffer
from hysteresis stemming from self-induced magnetic screening caused
by the high critical current magnitude typical of such low-resistance
metallic weak links. In a subsequent work [60], this shortcoming was
lifted by reducing the cross section of the copper wire increasing its re-
sistance while keeping it in the short-junction limit. With this approach,
a 50µeV minigap modulation amplitude was observed, a value corre-
sponding to only ≈ 36% of the full induced minigap width measured
at zero applied magnetic field.

The typical cause for incomplete minigap modulation lies in non-
ideal phase bias of the weak link. In the limit of negligible magnetic
screening originating from the geometric self-inductance of the loop, the
effective phase difference imposed to the weak link by flux quantization
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Figure 5.2: Pseudo-colour scanning electron micrographs of a typical SNS SQUIPT

device, realized by tilted evaporation of metallic thin films through
a suspended resist mask defined by electron-beam lithography. The
first evaporation (purple layer) consists in 15nm of aluminum (Al),
subsequently oxidized to form an AlOx tunnel barrier. The second
evaporation (green layer) consists in 25nm of copper (Cu) realizing
the normal metal nanowire. Finally, 150nm of Al (dark yellow) are
evaporated to form the superconducting loop (having inner diameter
' 1.7µm) as well as the electrodes in clean electric contact with the
Cu film. The inset in the bottom right shows a magnified view of
the Cu nanowire region. The interelectrode spacing is ' 140nm; the
width of the nanowire is ' 30nm. The tunnel probe is ' 60nm-
wide at the interface with the Cu weak link.
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is affected by the competition between the kinetic inductance of the
superconducting loop and the Josephson inductance of the weak link
(respectively LS and LWL). Complete phase bias, corresponding to
high phase gradient developed across the Cu nanowire, is only possible
in the limit LS/LWL � 1 [61]. The difficulty in achieving this regime
originates from the short-junction nature of the weak links which, apart
from the aforementioned high critical current values, also show at
low temperature a non-sinusoidal CPR IWL(θ). Both effects [15, 16]
suppress the magnitude of LWL = (Φ0/2π)(∂I

WL/∂θ)−1 as the value
of the phase difference θ approaches π, where the sharpest response is
expected [58].

Here we show that a complete phase bias can be achieved in a
junction approaching the short limit by realizing a copper wire having a
nanoscale cross-section (thus maximizing LWL) while at the same time
having a compact superconducting aluminum loop characterized by
low normal-state resistance (therefore minimizing both the kinetic and
geometric components of LS). As a consequence of the full minigap
modulation in the proximized weak link, we obtain record magnetic
flux responsivity figures, both in current- and voltage-biased setups.

5.2 transport spectroscopy

Figure 5.2 shows a scanning electron micrograph of a typical SQUIPT

device, fabricated according to the protocols detailed in section 2.1 with
the deposition of three metallic layers. An initial 15nm-thick Al layer is
deposited at 40◦ and subsequently exposed to a pure O2 atmosphere
(37mTorr for 300 s) to obtain the tunnel probe electrode. The normal-
metal nanowire is realized by evaporating a 25nm-thick Cu layer at
20◦. Finally, a 150nm-thick Al film in clean contact with the latter layer
is deposited at zero angle to implement the superconducting loop,
designed to have an internal diameter ' 1.7µm.

The device core (visible in the bottom right inset of fig. 5.2) is
characterized by an interelectrode spacing L ' 140nm, while the
copper nanowire is 30nm-wide and overlaps the lateral supercon-
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ducting electrodes for ' 400nm per side. The width of the tunnel
probe electrode is ' 60nm. Based on previous measurement on Cu
nanowires of similar cross-section in the previous chapter, we estimate
the ratio L/ξ0 = L

√
∆r/ hDCu ≈ 1.1 which confirms the frame of the

intermediate-short junction regime. Above, ∆r ' 185µeV is the energy
gap in the superconducting ring and DCu ' 55 cm2 s−1 is the diffusion
coefficient for our Cu nanowire. The yield of such simple fabrication
scheme is about 20%, being mostly limited by the mechanical stability
of the suspended polymethyl-methacrylate mask defining the loop.

The magneto-electric characterization was performed in the Heliox
setup. Current response under voltage bias was measured in a two-wire
configuration as a function of the magnetic flux generated by a magnetic
field applied orthogonally to the plane of the substrate. The current
response shows periodicity with respect to the applied magnetic field
density with period B0 = Φ0/Aeff ≈ 6.2G, where Aeff ≈ 3.3 (µm)2 is
consistent with the area enclosed by the ring of the SQUIPT.

The left panel of fig. 5.3 shows the current-vs-voltage I(Vb) charac-
teristics recorded at the base temperature (T = 240mK), for selected
equally-spaced values of the applied magnetic flux ranging from Φ = 0

to Φ = Φ0/2. At zero flux (fully open minigap) the characteristic shows
a behaviour resembling that of a tunnel junction between superconduc-
tors with different energy gaps. By increasing the magnetic field the
minigap closes, until the characteristic is similar to that of a NIS junction
at Φ = Φ0/2. From these data we estimate the 15nm-thick aluminum
probe to be characterized by a superconducting gap ∆pr ≈ 235µeV
and a tunnel resistance RT ≈ 55 kΩ. The curves are consistent with
a maximum minigap amplitude εg(Φ = 0) ≈ 145µeV , a value which
corresponds approximately to 78% of ∆r, the energy gap in the super-
conducting ring. The top right panel of fig. 5.3 shows the theoretical
BCS-like profile [14] of the DOS in the probe junction where a Dynes
parameter γ/∆pr = 10−3 accounts for energy smearing due to finite
quasiparticle lifetime [25, 26]. The bottom right panels in fig. 5.3 show
the theoretical DOS in the weak link ρWL(E), spatially averaged over
the probe width. The latter DOS has been obtained by solving numer-
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Figure 5.3: The left panel shows current vs voltage characteristics recorded
at 240mK for 7 equally-spaced magnetic flux values ranging from
Φ = 0 to Φ = Φ0/2. The upper inset shows a magnification of the
low-voltage bias range, where weak phase-dependent supercurrent
features appear at fixed voltage values. The lower inset shows a
magnification of the onset of quasiparticle conduction, where the
voltage dependence of the current can be non-monotonic as a conse-
quence of thermally-activated transport. This is particularly evident
(at finite temperature) when the minigap starts to be suppressed by
the magnetic flux. The top right panel shows the theoretical BCS den-
sity of states ρpr(E) of the superconducting probe (∆pr = 235µeV).
The bottom right panels show the theoretical local density of states
ρwl(E) in the proximized weak-link averaged over the probe width
for three different values of the applied magnetic flux. ρwl(E) was
obtained by the numerical solution of the 1-D Usadel equations
assuming L = 1.1 ξ0, and full transparency at the interfaces.
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ically the 1-D Usadel equations according to the methods presented
in chapter 1 with parameters L/ξ0 = 1.1, ∆r = 185µeV and assum-
ing perfect interface transparency between the ring and the wire, for
Φ = 0, 0.25, 0.5Φ0.

The upper inset in the left panel of fig. 5.3 shows a magnified view
of the flux dependent features appearing at low bias. The latter can
be attributed to a weak Josephson coupling between the proximized
nanowire and the probe electrode, and their complete suppression at
Φ = Φ0/2 is a further indication of the full modulation of the minigap.
A close inspection of the current-vs-voltage characteristics in fig. 5.3
indicates that the measured current modulation is able to reach peak-to-
peak amplitudes as large as 4nA. On the other hand, when biased at
fixed current, the amplitude of the corresponding voltage modulation
approaches εg/e.

The lower inset in the left panel of fig. 5.3 shows a magnified view
of the characteristics at the onset of quasiparticle conduction. Here
the current is non-monotonic as a consequence of the appreciable ther-
mal population of the quasiparticle states in the proximized nanowire
resulting in additional conduction when Vb = [∆pr − εg(Φ)]/e. This
bias configuration shifts the chemical potentials of the tunnel junction
electrodes so that the singularity in the DOS of the probe electrode is en-
ergetically aligned to the thermally excited quasiparticles in the copper
nanowire. In the following, we adopt the term “singularity-matching
peak” to refer to this particular transport feature, in analogy to S1IS2

systems [12]. The tunnel resistance value obtained in the fabrication
process is compatible with the optimal input load impedance of both
voltage and current preamplifiers. In the following we consider both
voltage-biased and current-biased setups.

5.3 magnetometric performance

Current-vs-flux (i.e., at fixed voltage bias) response figures have been
obtained by numerical differentiation with respect to the magnetic flux
of the I(Φ, Vb) characteristics (top left panel of fig. 5.4) at fixed Vb.
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The bottom panel shows the absolute value of the base temperature
flux-to-current transfer function |∂I(Vb,Φ)/∂Φ| as a colormap. In this
context the transfer function map indicates sharp response (due to
the abrupt onset of quasiparticle conduction) reaching values as high
as 108nA/Φ0, over a wide range of the bias parameters in both flux:
Φ ∈ [0.35÷ 0.45Φ0], and voltage bias: Vb ∈ [275÷ 310µV]. This high
sensitivity (approximately four times higher than the best-performing
devices so far [60]) originates from both a lower tunnel probe resistance
and a full modulation of the minigap. In addition, the maximum flux-to-
current responsivity level, is only moderately suppressed by increasing
the temperature (top right panel in fig. 5.4).

Voltage-vs-flux characteristics, recorded at 240mK for a few selected
values of the current bias in the vicinity of the maximal response
(Ib = 435 pA, Φ ' 0.5Φ0) are shown in the left panel of fig. 5.5. The
absolute value of the relative flux-to-voltage transfer function is plotted
as a colormap in the left panel of fig. 5.6. At low current bias the non-
monotonicity of the current vs voltage characteristics (see the bottom
inset in fig. 5.3) results into bistable voltage configurations, giving rise
to hysteretic behaviour and limiting the useful bias range for a SQUIPT

used as a linear sensor. The non-monotonicity originating from the
singularity-matching peak can, in principle, be limited by lowering
the electron temperature beyond the base temperature of our cryostat.
This can be achieved by using dilution refrigerators but also with the
adoption of integrated on-chip electronic coolers [24, 62] relying on the
same fabrication technique. On the other hand, the supercurrent peaks
(see top inset in fig. 5.3) give rise to a similar electric bistability and
are expected to increase in magnitude at lower temperatures (when
not countered by lower transparency of the tunnel barrier) and will
ultimately limit the current bias range available for linear response.

Notably, the electric bistability provided by the singularity-matching
peak could instead be exploited for operating the SQUIPT as a threshold
detector. In this configuration, the flux is applied in the close vicinity of
a switching point (e.g., Ib = 335 pA and Φ = 0.48Φ0 in the left panel
of fig. 5.6), so that flux variations crossing the threshold given by the
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Figure 5.4: The top right panel shows current-vs-flux characteristics measured
at 240mK for fixed voltage bias (from bottom to top, Vb = 182, 212,
232, 252 and 282µV). The bottom panel shows a colormap of the
absolute value of the flux-to-current transfer function (|∂I/∂Φ| vs
Vb and Φ) obtained by numerical differentiation of the I(Φ) curves
measured at 240mK. Arrows indicate in corresponding colors the
voltage bias values for the characteristics plotted in the top left
panel. The top right panel shows the temperature dependence of the
maximum absolute value of the flux-to-current transfer function.
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Figure 5.5: The left panel shows voltage-vs-flux characteristics measured at
240mK for fixed current bias (from bottom to top, Ib =335, 435 and
535 pA). The middle panel shows a colormap showing the measured
I(Vb, Φ) dataset; the current isolines match the characteristics shown
in the left panel. The reentrant shape of the lowest current isoline
is at the origin of the hysteresis displayed in the corresponding
V(Φ, Ib) characteristic (green trace in the left panel). The right panel
shows a colormap of the theoretical current vs Vb and Φ calculated
for a SQUIPT device based on a SNS weak link in the short regime.
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swiching point yield a voltage step response (whose amplitude may
be ≈ 50µV) within a timescale corresponding to the relaxation time of
the measurement setup. Such scheme can be useful for sampling the
probability distribution function of a noisy magnetic flux source.

We now discuss the SQUIPT sensitivity when operated as a linear flux
sensor. Inspection of the flux-to-voltage transfer function (shown as a
colormap in fig. 5.6) reveals that the current-biased setup allows for a
high responsivity (≈ 1mV/Φ0) over a rather broad flux and current
bias range, with a peak value of ≈ 3mV/Φ0, located at Φ = 0.495Φ0
and Ib = 435 pA. This working point lies just outside of the hysteretic
region, marked with magenta lines, and it is thus a suitable point for
linear operation of the detector.

While compatible with earlier results [60], such a high voltage transfer
function may seem surprising. Indeed, the detailed theoretical inves-
tigation of the SQUIPT performance in the short junction limit (where
analytic calculations can be performed) carried in [58], predicted maxi-
mal transfer functions of about 3.1∆r/eΦ0 around Φ = 0.5Φ0, which
can be traced back to the flux dependence of the minigap. Extrapolating
this limit to our moderately-short SNS junction, i.e., assuming the same
scaling but replacing ∆r with the measured minigap εg = 145µeV , one
would expect a response of about 450µV/Φ0, which is approximately 6
times smaller than the maximum value obtained in the experiment.

The reason for the observed higher response originates from the
contribution of the singularity-matching peak, ignored in [58], which
bends the non-hysteretic V(Φ, Ib) characteristics in the vicinity of Φ0/2
and V = ∆pr/e, resulting in a sharper voltage response. This feature
can be easily reproduced by using a simplified model which holds
in the short-junction limit as described in [58], with the replacement
∆r ↔ εg.

The right panel in fig. 5.5 presents a contour plot of the I(Φ, Vb)
dataset obtained with the above theoretical model in the vicinity of
eVb = ∆pr = 235µeV and Φ/Φ0 = 0.5 at T = 240mK. The white
lines correspond to calculated current isolines, who strongly resemble
those observed in the actual measured I(Φ, Vb) characteristics (see the
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Figure 5.6: The left panel shows a colormap of the absolute flux-to-voltage
transfer function (|∂V/∂Φ| vs Ib and Φ) obtained by numerical differ-
entiation of V(Φ) curves measured at 240mK. Hysteresis originating
from the non-monotonicity of the current vs voltage characteristics
(see lower inset of fig. 5.3) can be appreciated for Ib < 435pA. Ma-
genta lines mark the hysteretic regions in the colormap. Arrows
indicate in corresponding colors the current bias values for the char-
acteristics plotted in the left panel of fig. 5.5. The right panel shows
the temperature dependence of the maximum absolute value of the
flux-to-voltage transfer function.
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middle panel of fig. 5.5). Although rather idealized, the model provides
a satisfactory reproduction of the physical mechanism underlying the
observed high responsivity. Furthermore, a close match between the
measured V(Φ, Ib) response curves and the current isolines can be
appreciated in the juxtaposition of leftmost panels in fig. 5.5, therefore
corroborating the identification of physical origin of the high flux-to-
voltage responsivity we observe.

In particular, three regimes can be recognized, depending on the mag-
nitude of the quasiparticle current. Low-current regime (corresponding
to the green trace) is characterized by hysteresis originating from the
singularity-matching peak bistability, which is evident in the reentrant
shape of the low-current isolines in the rightmost panels of fig. 5.5.
Conversely, in the high-current limit (exemplified by the blue trace) no
hysteresis can be found, but the magnetic flux responsivity is only mod-
erate. The optimal regime for sensitivity (represented by the cyan trace)
emerges in the smooth transition between the two abovementioned lim-
its. This latter regime features the highest value of the flux-to-voltage
transfer function, but no hysteresis.

The temperature dependence of the maximum value of the transfer
function is displayed in the right panel of fig. 5.6. The substantial en-
hancement observed at lower temperature is due to the abrupt character
of the thermal suppression of the singularity-matching peak appearing
in the current-vs-voltage characteristics, which allows to access the
optimal current-bias range required for the sharpest voltage response.

Our device has been designed to show that high transfer function
values can be obtained in SQUIPTs based on Al-Cu technology. The in-
termediate value of the impedance of the device (RT = 55 kΩ), allows
sensitive operation of the interferometer in both voltage-biased and
current-biased setups. However, given the significant capacitive load
present in the filtered lines of our refrigerator setup, the current-biased
measurement scheme shows better performance thanks to the supe-
rior common-mode noise rejection properties of differential voltage
preamplification.
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Continuous lines indicate traces recorded at optimal current and
flux bias, where the transfer function is maximal (3mV/Φ0). The
right vertical axis shows the values for the magnetic flux resolution
(ΦN) under these conditions. The 500nΦ0/

√
Hz white noise level is

shown as a green horizontal line. Dotted lines indicate control traces
recorded with optimal current bias at Φ = 0 (zero transfer function
and comparable differential resistance).
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Figure 5.7 shows an assessment of the noise performance of the
SQUIPT as a magnetic flux sensor obtained at 240mK by measuring the
power spectral density of voltage fluctuations recorded at the output
of battery powered differential voltage preamplifiers (NF Corporation
model LI-75A). Two identical preamplification units are connected to
the two independent ADC channels of a spectrum analyzer (HP model
89410A), which computes the PSD of each channel as well as the CSD

between the two. The latter quantifies the amount of noise which shows
as correlated in the two ADC channels, and sets an upper limit to the
estimate of the intrinsic noise figures for the measurement setup. The
SQUIPT device is operated in the current-bias mode with Ib = 435 pA.
The spectral densities (both PSD and CSD) are expressed in amplitude
units (VN, in V/

√
Hz); the expected bandwidth of the measurement

setup (' 20Hz when tuned for high sensitivity) is here limited by the
significant capacitance of the filtered measurement lines (' 90nF).

The continuous-line traces in fig. 5.7 were acquired with the de-
vice tuned for maximum sensitivity (|∂V/∂Φ|max = 3mV/Φ0 and
Φopt = 0.495Φ0). In these conditions, besides some spurious noise
peaks, the input-referred white noise level for the preamplifiers (black
trace) approaches the nominal limit for this model (2nV/

√
Hz), while

the cross-correlated white noise level (red trace) reaches values as
low as 1.5µΦ0/

√
Hz. Control traces, shown as dotted lines, were ac-

quired with Ib = 435 pA but zero magnetic flux (and hence zero trans-
fer function, yet similar differential resistance). They differ from the
maximum-sensitivity traces for the absence in the 2Hz to 20Hz fre-
quency range of a 1/f slope whose level (assuming a field-to-voltage
coefficient Aeff|∂V/∂Φ|max ' 4.8V/T ) is consistent with the expected
magnetic low-frequency noise found in unshielded rooms in urban
environment (typically in the 0.1− 1nT/

√
Hz range at 10Hz [49]).

The white-noise floor displayed in the CSD traces is significantly lower
than the corresponding levels from the single-channel PSD, meaning that
the room-temperature preamplification stage is here limiting the noise
performance of the measurement setup. The cross-correlated voltage
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white-noise floor sets an upper limit to the magnetic flux resolution
achievable by our measurement setup,

ΦN =
VN

|∂V/∂Φ|
' 500nΦ0/

√
Hz . (5.1)

In spite of the relatively simple measurement equipment used, this
noise figure is already comparable with state-of-the-art SNS SQUID inter-
ferometers equipped with custom cryogenic preamplification readout
systems [50, 51].

5.4 discussion

The key challenge in developing an effective SQUIPT magnetometer is
establishing sizeable flux-to-voltage responsivity figures. This requires
both a broad minigap in the proximized weak link and effective flux-
to-phase bias conditions in the interferometer as a whole. Adopting
wide-gap superconductors [63, 64] and designing the proximized weak
link to be in the short limit are effective ways of satisfying the former
requirement. However, the concomitant increase of the critical current
directly hampers the phase-bias mechanism in the interferometer, in
particular if the superconductor of choice is characterized by significant
kinetic inductance.

In our design, the choice of aluminum grants ease of fabrication
and low kinetic inductance. The short yet resistive copper weak link
allows the complete phase bias of the minigap, yielding a flux-to-voltage
modulation amplitude reasonably close to the ideal value of ∆r/e. All
in all, successful SQUIPT design is an exercise in nanofabrication. This is
evident from our devices (see fig. 5.2), in particular with respect to the
nanoscale geometry of the copper weak link and its contact with the
readout tunnel electrode.

Compared with SNS SQUIDs presented in the previous chapters, the
readout is characterized by typical impedance values (≈ 10 kΩ) that
are a better match to the differential input stage of DC voltage LNAs. A
figure of merit marking an important difference with respect to SQUIDs
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(of both SNS and SIS types) is the dissipated power. As a consequence of
the minute current levels typically associated with subgap quasiparticle
conductance, the power dissipated in the readout reaches here values
as low as ≈ 100 fW. The supporting publication “Normal metal tunnel
junction-based superconducting quantum interference proximity tran-
sistor” [5] demonstrates the feasibility of sub-femtowatt readout of a
SQUIPT equipped with a normal-metal tunnel probe.

On the other hand the relatively high impedance of the tunnel bar-
rier yields a proportionally low DC readout bandwidth, limiting the
response time to the millisecond timescale; this value is not strictly an
intrinsic limitation, but partly derives from the high shunt capacitance
introduced by the signal filters adopted in the cryogenic setup. Never-
theless, schemes to couple RF readout to tunnel barriers in contact with
proximized systems have been recently demonstrated [65, 66], a promis-
ing development to bring SQUIPT devices to fully outperform SQUIDs for
ultrasensitive microscale magnetometry at sub-Kelvin temperatures.



6A L U M I N U M - B A S E D S Q U I P T S

In the previous chapter it has been shown that a sensible design in both
the superconducting ring and the normal-metal weak link is crucial
to obtain full phase polarizability of the latter. For a sinusoidal CPR,
this property is granted by an inductive screening parameter1 βL < 1.
On the other hand, the amplitude of the voltage response in SQUIPT

devices is proportional to the width of the energy gap in the LDOS

sampled by the tunnel probe electrode. Therefore, in order to enhance
the performance of SQUIPT magnetometers in terms of both operating
temperature and voltage modulation it is helpful to maximize the
energy gap in the proximized element. This goal can be achieved by
ensuring that the latter is in the short regime (i. e., ETh ≈ ∆), and by
adopting a superconductor with sufficiently high critical temperature.

However, most high-gap elemental superconductors (such as vana-
dium, niobium, or lead) are also characterized by significant normal-
state resistivity. As a consequence, a strong kinetic term is to be factored
in the total ring inductance. This generally implies tighter requirements
on the geometry of the interferometer in order to achieve full phase
polarizability of the proximized weak link. In this chapter, instead, we
explore the consequences of the unconventional idea of substituting
the proximized normal-metal (copper) with an intrinsic superconductor
(aluminum). The weak link in the resulting SQUIPT interferometers can
be then considered as a geometrical constriction in a compositionally
homogeneous ring. More precisely, the weak link consists in a SSS junc-
tion whose geometrical length is designed to be comparable with the
coherence length of the constituent superconductor2.

1 See eq. (1.22) in section 1.4 for the definition of βL.
2 For aluminum films of 10nm to 200nm thickness, ξ is typically in the 50nm to
150nm range, depending on the electron elastic mean free path.
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Figure 6.1: SQUIPT based on a SSS weak link. The tunnel probe readout scheme
is shown in the top left part of the figure. The progressive collapse
of the pairing potential amplitude in the middle of a short supercon-
ducting wire for increasing phase gradient is conceptually shown
in the right part of the figure. The position-dependent value of the
complex order parameter inside the wire is shown as a twisted-
wireframe representation of a revolution surface. The phase bias
enforced by the rigid electrodes (grey wireframe) acts as a “torque”
on the self-consistent pairing potential in the wire (black wireframe).
The singular cone-like shape with ∆(L/2) = 0 is relative to the SSS

weak link being biased at the π node of its CPR.
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Figure 6.2: Tilted pseudo-colour scanning electron micrograph of a typical SSS

SQUIPT device. The bottom left inset shows a zoomed-in perpendic-
ular view of the weak link region. Physical size scales are indicated
in both micrographs. Here, yellow indicates the 150nm-thick “inter-
ferometer” and 25nm-thick “nanowire” Al layers; the 15nm-thick
AlOx tunnel probe electrode is shown in purple, realized by ox-
idizing respectively a Al/Al0.98Mn0.02 metallic film to obtain a
superconducting/normal-metal electrode.
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By recording the magnetic flux response of the current-voltage charac-
teristics as a function of temperature, we find evidence of the transition
between a multi-valued and a single-valued CPR dependence for the
superconducting weak link, in accordance with the theoretical expec-
tations listed at the end of section 1.7 for diffusive SSS junctions. In
the single-valued CPR regime a complete suppression of the gap in
the quasiparticle excitation spectrum of the superconducting wire is
observed. This phenomenon can be understood as the coherent3 col-
lapse of the order parameter inside the superconducting wire, and is
presented in the first section of this chapter.

Notably, the transition between multi and single-valued CPR regime
entails a temperature-tunable singularity in the response to magnetic
flux, originating from the resolution of hysteresis in the phase bias of
the superconducting constriction. This is exploited in the second section
of this chapter, where a review of magnetometric performance of SSS

SQUIPTs is presented. These devices show significant improvements
in terms of flux noise resolution, bandwidth and optimal operating
temperature with respect to their SNS counterparts. The chapter is
concluded by a review on the significance of the results.

6.1 coherent collapse of the order parameter

Superconducting depairing is defined as the suppression of the spatial
density of Cooper pairs. It can be induced, beside temperature, by
sources of time-reversal symmetry breaking. The latter includes kinetic
effects, where a non-zero condensate velocity reduces the number of
time-reversed electronic states that can be self-consistently paired up to
form the condensate4.

Depairing affects the spectral properties of the superconducting con-
densate. This has been shown experimentally in [44] for a translationally
invariant system constituted by a thin5 superconducting wire subjected

3 I. e., caused by the phase bias of the interferometer.
4 See e. g., [12], pag. 125.
5 Compared to the magnetic penetration depth.
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to current bias and application of a magnetic field orthogonal to the
wire axis. The DOS of quasiparticle excitations has been measured by
tunnel-probe spectroscopy, revealing that both current bias and ap-
plied magnetic field induce an equivalent deformation in the excitation
spectrum of the condensate via the manipulation of its momentum.
In particular, the energy gap in the quasiparticle DOS is shown to be
progressively suppressed by the increasing phase gradient of the order
parameter6, although not completely.

On the other hand, a properly designed SQUIPT interferometer applies
a superconducting phase difference directly on a diffusive weak link.
When the latter is an intrinsic superconductor having a geometrical
length comparable to its coherence length, significant phase gradient
values can be expected as soon as the interferometer is flux-biased. As
shown numerically in section 1.7, when diffusive SSS weak links are
biased beyond the critical current up to the θ = π node of their CPR, the
self-consistency requirement for the pairing potential forces the latter
to suppress its amplitude in the middle of the superconducting wire. In
this specific state no supercurrent flows in the Cooper condensate and,
by virtue of time-reversal symmetry, its order parameter ∆ exp (iφ) is a
real-valued and sign-changing function of the spatial coordinate along
the wire. Then, as a consequence of continuity, the pairing potential
amplitude ∆(x) must equal zero in some position inside the wire (e.g.,
the centre in case of symmetric boundaries)7.

This concept is shown in fig. 6.1, where the spatial profile of the com-
plex order parameter is represented for increasing depairing conditions.
In particular, complete pairing potential suppression is expected when
the diffusive SSS weak link is exactly biased at the θ = π node of its
CPR. As thoroughly discussed in section 1.7, the possibility to achieve
θ = π node bias depends on the normalized length of the supercon-

6 The phase gradient is proportional to the canonical momentum of the condensate. In the
latter the kinetic and the magnetic-coupling terms can be manipulated independently.

7 Notably, while wide (compared to ξ) weak links can accommodate Abrikosov vortices,
here we consider quasi-1D wires (thinner than ξ). They develop pinned 1D phase
singularities without any screening supercurrents [15].
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ducting wire. In fact, while short SSS weak links are characterized by a
proper single-valued CPR functional form, in the long-wire limit even a
θ = π phase difference can be matched by an approximately uniform
phase gradient in the wire, corresponding to non-zero supercurrent
values. The resulting anomalous multi-valued CPRs can be reverted
to the single-valued regime under the influence of sufficiently high
temperature8.

6.2 transport spectroscopy

We first consider SQUIPT devices designed with the intent of studying
the LDOS of the phase-biased SSS weak link. To this end, a normal-metal
tunnel probe electrode would be the ideal tool, due to the direct propor-
tionality between the observed differential conductance and the probed
DOS in the low temperature limit, as shown in eqs. (1.36) and (1.37). To
realize a normal-metal probe SQUIPT, 2% Mn-doped Al alloy has been
adopted as a drop-in replacement for the pure Al deposition for the
tunnel electrode fabrication in the protocol introduced in the previous
chapter. At this doping level, any superconducting gap in the AlMn
alloy is effectively suppressed [46]. At the same time, tunnel barriers
can be grown by controlled oxidation with similar parameters and final
quality as in the case of pure Al. Figure 6.2 show a scanning electron
micrograph of a completed typical SSS SQUIPT interferometer. Here the
tilted image allows to appreciate the strong geometrical contrast in
the cross-section of the interferometer loop compared to the supercon-
ducting constriction represented by the SSS weak link. As thoroughly
discussed in the previous chapter, this design is required to ensure
complete phase polarizability of short diffusive weak links.

The electron transport properties of the device have been charac-
terized in the Triton setup, a dilution refrigerator able to access the
0.02K to 1.0K range. The modulation of the current-vs-voltage I(Vb)
characteristics of a typical (wire length L = 160nm) normal-metal tun-

8 Compare e. g., figs. 1.20 and 1.22.
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Figure 6.3: Magneto-electric response of a typical normal-metal tunnel probe
device. Current-vs-voltage characteristic curves, recorded at lattice
temperature T = 20, 300, 500 and 700mK, respectively. The different
traces in each panel are color-coded to six applied magnetic flux
values equally spaced in the range Φ = 0→ Φ0/2.
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nel probe device (tunnel resistance RT ≈ 150 kΩ) as a function of the
magnetic flux Φ applied orthogonally to the interferometer by a super-
conducting coil is presented in figs. 6.3 and 6.4. At base temperature
(T = 20mK) increasing the magnetic flux bias from Φ = 0 to Φ = Φ0/2

already results in a significant 65% suppression of the energy gap in
the quasiparticle DOS compared to its zero-field value. Notably, the low-
temperature differential conductance characteristics (obtained under
fixed voltage bias with a Lock-In Amplifier (LIA) and shown in the
upper panel of fig. 6.4) recorded for Φ/Φ0 < 0.25 are compatible with
data reported for specimens in the current-biased (i. e., constant phase
gradient) regime [44]. This is expected since in this flux range, the CPR

is essentially linear, so that phase and current bias are interchangeable.
On the other hand, for Φ/Φ0 ≈ 0.5, a peculiar concentration of

quasiparticle states at the edges of the residual energy gap can be
inferred from the experimental data. The latter feature, absent in short
phase-biased normal-metal wires [5], appears reproducibly between
different samples, provided a sufficient phase difference is applied to
the short superconducting wire. By inspecting characteristic curves
recorded at increasing temperature (T = 300, 500 and 700mK) evidence
of the progressive suppression of the residual energy gap at Φ =

Φ0/2 can be gathered. The magnetic modulation of the differential
conductance recorded at T = 650mK (lower panel in fig. 6.4) shows the
transition between a NIS-like response at zero field to an essentially9

ohmic (i. e., NIN-like) response at Φ = Φ0/2.
These observations can be understood by considering the tempera-

ture response [15] of the CPR of a weak link based on a superconducting
wire in contact with rigid superconducting electrodes. Figure 6.5 shows
the comparison between observed differential conductance data and
theoretical prediction stemming from the LDOS of a phase-biased SSS

9 The small residual conductance dip that can still be observed for |Vb| < 200µV is
consistent with effects related to the interaction with the photonic environment, as allowed
by the significant charging energy of the nanosized tunnel junction (with capacitance
≈ 100aF). For further details, compare with the bottom right panel in fig. 1.13, and the
corresponding derivation in chapter 1.
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weak link computed in the quasiclassical framework by solving the
Usadel equations self-consistently with the pairing amplitude profile,
according to the methods reported in chapter 1. Figure 6.6 shows a syn-
opsis of the “internal” SSS-related quantities correspondingly obtained
in this modelization effort.

For reference, these numerical datasets have been generated assuming
the critical temperature values Tc,w = 1.4K for the thin wire and the
bulk value Tc,r = 1.25K for the thick ring. The modeled diffusive
weak link has normalized length L/ξ0 = 1.7, corresponding to ξ0 =√

 hD/∆0 = 95nm for a physical length L = 160nm. The interfaces
of the wire are modeled with a non-ideality coefficient r = 0.75. The
values of the set of mutually-independent parameters Tc,w, ξ0 and
r are chosen on the basis of optimal reproduction of the differential
conductance characteristic curve recorded for null magnetic field at
T = 20mK. Optimal agreement with the observed flux modulation at
all temperatures is obtained by letting βL = 0.03, consistent with Ic ≈
18µA deduced from the former parameters if the total interferometer
inductance is10 L = 3.5pH.

As the temperature increases, the CPR of the weak link progressively
shifts from a multi-valued Is(Φ) at low-temperature [characterized by
metastable Φ = Φ0(n+ 1/2) nodes] to a single-valued functional form
reached at T = 700mK. In the latter regime the amplitude of the pairing
potential in the centre of the wire can be completely suppressed by
applying a phase difference equal to π (lower panel of fig. 6.6). The
striking correspondence observed between data recorded at different
temperatures and the corresponding theoretical prediction in fig. 6.5
corroborates the physical interpretation of complete pair potential sup-
pression in the superconducting wire for Φ/Φ0 = 0.5.

10 This value of the inductance of the superconducting loop including both geometric and
kinetic contributions, has been numerically estimated from the actual interferometer
geometry with the software FastHenry version 3.0wr by S. R. Whiteley (available from
http://wrcad.com). The calculated value corresponds to an effective magnetic penetration
depth λ⊥ ≈ 60nm, which is compatible with a 150nm- thick Al film.

http://wrcad.com
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Figure 6.6: Results for the modelization of the superconducting nanowire ac-
cording to parameters inferred from experimental data. The top
panel shows the circulating supercurrent Is normalized to the zero-
temperature value of the critical current of the wire (Ic). The middle
panel shows the free energy F normalized to E0 = IcΦ0/2π. The
bottom panel shows the pairing potential amplitude ∆(x = L/2)

in the center of the superconducting nanowire normalized to the
zero-temperature value of the pairing potential amplitude in the
interferometer loop (∆0). The different traces are color-coded to
the temperature values T = 20, 300, 500 and 700mK, and show the
modulation of the respective quantity as a function of the magnetic
flux Φ applied to the interferometer. Dotted branches in the first
and second panels represent theoretical solutions corresponding to
thermodynamically unstable interferometer states.
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6.3 magnetometric performance

The phase-driven collapse of the pairing potential is further confirmed
by observations focused on the transition from the unstable to stable
π phase bias regime in devices equipped with a superconducting tun-
nel electrode. The latter, realized by a 15nm-thick oxidized Al film,
features a BCS-like DOS characterized by a sizeable superconducting
gap ∆pr ≈ 250µeV , typical of thin Al films. As a consequence, the
spectroscopic sampling of the DOS in the phase-biased wire does not
suffer from the loss of energy resolution due to thermal broadening
typical of normal-metal probes. In particular, this setup allows for a
direct estimate of the energy gap εg(Φ) in a generically-gapped DOS. At
finite temperature, the latter quantity can be derived [59] from the dif-
ference between voltage bias values relative to the direct and thermally-
activated conductance peaks (found, respectively, at eVb = ∆pr ± εg,
similarly to the well-known case of quasiparticles tunneling between
different superconductors at nonzero temperature [12]).

The top panels of fig. 6.7 show normalized differential conduc-
tance maps recorded for a representative device characterized by a
L = 210nm superconducting wire in contact with a RT = 15 kΩ su-
perconducting tunnel electrode. The mapping is focused on voltage
bias values corresponding to the superconducting gap in the probe
(eVb ≈ ∆pr) and with coupled magnetic flux applied in a minute range
centered around Φ0/2. By inspecting the flux modulation of the direct
(eVb > ∆pr) and thermally-activated (eVb < ∆pr) conductance peaks,
an incomplete suppression of 2 εg ' 40µeV can be inferred from data
recorded at T = 0.9K (topmost panel). Within a 100mK temperature
increase, we observe the merging of the direct and thermally-activated
peaks at Φ/Φ0 = 0.5 and eVb = ∆pr, the direct evidence of the full
suppression of the energy gap in the probed quasiparticle DOS. Equiva-
lently (lower panels), the latter is associated with a smooth monotonic
I(Vb) characteristic curve at T = 1K for Φ/Φ0 = 0.5, whearas the
corresponding curve at T = 0.9K displays a ' 40µV-wide plateau.
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Figure 6.7: Superconducting tunnel probe spectroscopy of the phase-driven col-
lapse of the superconducting gap in the Al nanowire. The two
topmost panels show the normalized differential conductance as
a function of the applied magnetic flux and voltage bias, recorded
at lattice temperature T = 0.9 and 1.0K, respectively. The region
showing negative differential conductance is indicated in magenta.
The two lowermost panels show the current-vs-voltage characteristic
curves recorded for Φ/Φ0 = 0.48, 0.49, 0.5 and for the same lattice
temperature values.
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Figure 6.8: Magneto-electric response of a typical superconducting tunnel probe
device. The top and bottom panel show, respectively, voltage re-
sponse (arbitrary offset) and corresponding flux-to-voltage transfer
function for Φ ≈ Φ0/2, recorded at temperature T = 1.0K. The
device is here operated under fixed current bias values Ib = 4.30,
4.35 and 4.40nA.
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We interpret these observations as the confirmation that the increase
in temperature has driven the CPR of the weak link to the single-valued
regime, leading to a complete collapse of the amplitude of the pairing
potential in the center of the wire for Φ/Φ0 = 0.5. In this case, the
temperature value for this transition is higher than for the normal probe
interferometer (figs. 6.5 and 6.6) as expected from the difference in the
respective lengths of the wires, in agreement with the theory. Notably,
while the value T = 1K is arguably sizeable, it is also significantly
smaller than the critical temperature Tc,w = 1.4K of the 25nm-thick Al
film the wire consists of.

The steep character of the magnetic flux dependence of the pairing po-
tential suppression suggests to exploit these devices for highly-sensitive
magnetometry applications. Inspection of voltage traces recorded at
T = 1K under constant current bias Ib from the representative su-
perconducting probe device (top panel in fig. 6.8) reveals abrupt but
continuous voltage response in a minute magnetic flux range close to
Φ/Φ0 = 0.5. Here, the different traces indicate current bias values in
the 4.3nA to 4.4nA range, matching the typical quasiparticle current
measured in the voltage-biased setup with Vb ≈ ∆pr/e = 250µV . The
corresponding flux-to-voltage responsivity characteristics (ibidem, lower
panel) obtain values as large as ∼ 27mV/Φ0, which are unparalleled in
this class of devices [3, 5].

The magnetic flux resolution of the SSS SQUIPT operated as a magne-
tometer has been estimated from the analysis of the cross-correlation
between the output signals of two parallel amplification chains con-
nected to the same device. As argued in section 2.3, this configuration
allows to distinguish amplifier-limited magnetic flux resolution perfor-
mance from noise sources intrinsic to the readout scheme.

Figure 6.9 shows a summary of the noise characterization of the
representative superconducting probe device for Φ ≈ Φ0/2, measured
at temperature T = 1K under fixed current Ib = 4.35nA. The noise
characteristic of the readout/amplifier system can be assessed by tuning
the applied magnetic flux to Φ = Φ0/2, where the flux-to-voltage
response is null to the first order in Φ. In this configuration (upper
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Figure 6.9: Summary of the magnetoelectric response figure of a typical super-
conducting probe device recorded at temperature T = 1K and cur-
rent bias Ib = 4.35nA. The leftmost panels show as a function of the
applied flux Φ, respectively, the DC voltage, the flux-to-voltage trans-
fer function and the differential conductance. The spectral character-
istics of the amplified signal (green/blue traces: individual-channel
power spectral density A1,2, black trace: cross-spectral density X12,
gray shading: readout noise floor estimate) are presented in the
rightmost panels for three illustrative flux working points. The top
panel corresponds to zero first-order response (Φ/Φ0 = 0.5), while
the middle and bottom panels are relative to the device being tuned
for highest responsivity and best noise-equivalent flux resolution,
respectively.
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left panel) the PSD profiles of the individual preamplifiers (green/blue
traces) are only barely higher than their nominal datasheet values,
whereas the cross-spectral density (black trace) converges to a profile
X12(f) consistent with the following model (gray shade):

X12(f) =

√
v2a + R2d

2eIb

|1+ 2πifRd C|
2

, (6.1)

where va = 0.7nV/
√

Hz is a white noise background, e is the elemen-
tary charge, Rd = ∂V/∂Ib is the differential resistance and C = 26nF
is the effective shunt capacitance consistent with the noise roll-off ob-
served for f ≈ 100Hz. This simple model, based on the quadrature
summation of RC-filtered tunnel shot noise with an amplifier-limited
cross-correlated white noise background is sufficient to describe X12
data recorded for 0.3 < f < 300Hz.

In fig. 6.9, a comparison between the leftmost panels shows that
the peak in the flux-to-voltage transfer function is correlated with a
corresponding peak in the differential resistance of the device (Φ/Φ0 =

0.502). On the other hand, the latter is suppressed with Φ/Φ0 > 0.5025,
while the flux-to-voltage transfer function maintains appreciable levels.
The noise characterization presented in the rightmost panels shows
indeed that at the working point associated with maximal responsivity
the power spectral density of the individual amplifiers is basically
indistinguishable from the cross-correlated spectrum, i.e., the va term
is negligible in Equation 6.1 compared to the shot noise term.

However, at this working point, the high value of Rd entails both a
reduction in the available bandwidth and an increase of the shot-noise
contribution to the observed voltage spectral density, lowering the ef-
fective Signal to Noise Ratio (SNR). By contrast, the bottom right panel,
which corresponds to a working point (Φ/Φ0 = 0.5025) associated with
a significantly lower value of Rd, demonstrates a X12(f) profile char-
acterized not only by wider available RC bandwith, but also slightly
improved SNR (as suggested by the shape of the 1.3Hz signal peak orig-
inating from mechanical vibrations induced by the pulse-tube cooler).
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ity (Φ/Φ0 = 0.502) and for best noise-equivalent flux resolution
(Φ/Φ0 = 0.5025).

This difference in performance can be more quantitatively appreciated
by renormalizing the spectral density profiles from voltage to magnetic
flux units by means of the flux-to-voltage transfer function values. The
results are shown in fig. 6.10. A summary of the performance figures
for the different working points is reported in table 6.1.
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Φ ∂V/∂Φ Rd noise floor bandwidth

(Φ0) (mV/Φ0) (kΩ) (nV/
√
Hz) (nΦ0/

√
Hz) (Hz)

0.5 0.0 36.7 1.5 — 167

0.502 11.3 117. 4.4 390 52

0.5025 4.6 26.2 1.2 260 234

Table 6.1: Summary of magnetometric figures for the representative supercon-
ducting probe SSS SQUIPT, operated at the working points of fig. 6.10.

6.4 discussion

In summary, we have presented a robust and reproducible means of
suppressing the order parameter amplitude of the Cooper condensate
inside a nanosized superconductor. Our observations are consistent
with established theory. Reaching the complete flux modulation of
the energy gap in the DOS inside the superconducting wire marks the
transition between the intrinsic-like and Josephson-like regime of the SSS

weak link. The corresponding temperature-dependent modulation of
the CPR from a multi-valued locus to a proper single-valued form entails,
at the cross-over, a strong dependence of the physical observables on
the applied magnetic flux for Φ ≈ Φ0/2.

This property finds immediate application for the realization of ultra-
sensitive micro-magnetometers. In this context, SQUIPTs based on SSS

weak links demonstrate several points of improvement compared to
the SNS counterparts presented in the previous chapter. At the optimal
working point, the SSS SQUIPT operates with a magnetic flux resolution
twice as good with one order of magnitude improvement in the available
bandwidth. Additionally, the 1K operating temperature makes this type
of device compatible with continuous Joule-Thomson cooling systems.
Finally, opposed to tarnishable Cu weak links, the self-passivation of
Al structures makes this design intrinsically robust against aging and
corrosion.
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