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DFB in DM-QCLs
When a hole is opened
in the top metallization,
inhomogeneous boundary
conditions are at play.

This affects the EM fields
inside the waveguide,
meaning that the patterning
tailors the shape, symmetry
and frequency of the lasing
eigenmodes.
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The goal
To tailor the resonating eigenmodes properties

via local phase control of the EM field

One needs to establish definite optic path length relations
 in the DFB pattern (geometric order)

Are periodic tilings the full story?



Quasicrystal
“A structure that is ordered but not periodic.”

Dan Shechtman

Nobel Prize in Chemistry (2011)



Penrose tiling

...

Just as crystals are obtained by repeated translations,
a Penrose tiling can be obtained by repeated “deflations”,
operations in which each element of the tiling changes
into multiple smaller elements, following fixed rules.



Structure factor

The long-range order is 
evident from the dense 
set of Bragg peaks in the 
Fourier transform of the 
Penrose lattice.

A 10-fold rotational
symmetry axis is present

in reciprocal space.

Striking properties:
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Penrose eigenmode
From 2D FEM

Effective index approx.

Standing wave mode

● spans the whole device 
● holes in phase
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Penrose eigenmode
From 2D FEM

Effective index approx.

Standing wave mode
labeled “P”

F = 3.17 THz
Q

2D
 = 145



Penrose eigenmode
Real space Reciprocal space

feedback

vert.
coupl.



Fabricated devices

Nearest neigh.
a = 21-23 um

Pattern tuning

Hole radius
r/a = 0.26-0.33

Gain band:
2.9 - 3.4 THz
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Batch (a = 23 um)
Moderate peak output power, single mode operation



Batch (a = 22 um)
High peak output power, some mode competition



Batch (a = 21 um)
Just for the r/a = 0.26 device

Considerable peak output power, ~single mode operation



Far field
Numeric

(3D F.E.M.)
Measured far field
(a = 21, r/a = 0.26)



Summary
We designed, fabricated and characterized double metal
THz QCLs based on quasiperiodic Penrose DFB pattern.

The Penrose design allows to reach sizeable output power,
with radiative performance figures already comparable
to the best vertical-emitting devices so far. 

P
out

 > 45 mW

W.P.E. ~   0.6 ‰
T

max
~    110K

Quasiperiodic lattices represent a robust design strategy 
for the realization of vertical emitting DFB resonators.  

For our best device:
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2D FEM calculation

Metal n
eff

 = 3.6

Hole n
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 = 2.8
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 = 1

P.M.L.
(open boundary)



Other eigenmodes



L341 active region



L341 active region



Prototype Device

Active Region
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