Penrose QCLS IQCLSW2014 - Policoro

<u>A.Ronzani</u>, M.Nobile, A.Tredicucci, V.Talora, M.S.Vitiello L.H.Li, A.G.Davies, E.H.Linfield

DFB in DM-QCLs

one period

When a hole is opened in the top metallization, inhomogeneous boundary conditions are at play.

This affects the EM fields inside the waveguide, meaning that the patterning tailors the shape, symmetry and frequency of the lasing eigenmodes.

DFB patterns

Fan *et al.* Optics Express **14**, 11673 (2006) Kumar *et al.* Optics Express **15**, 113 (2006) Amanti *et al.* Nature Photonics **3**, 586 (2009)

DFB patterns

Mahler et al.Xu et al.Appl. Phys. Lett.Nature Communications96, 191109 (2010)3, 952 (2012)

Mahler *et al.* Nature Photonics **3**, 46 (2009)

DFB patterns

Chassagneux *et al.* Nature **457**, 174 (2009) Halioua *et al.* Optics Letters **39**, 3962 (2014) Liang *et al.* Optics Express **21**, 31872 (2013)

To tailor the resonating eigenmodes properties via local phase control of the EM field

One needs to establish definite optic path length relations in the DFB pattern (geometric order)

Are periodic tilings the full story?

"A structure that is ordered but not periodic."

Dan Shechtman

Nobel Prize in Chemistry (2011)

Penrose tiling

Just as crystals are obtained by repeated translations, a Penrose tiling can be obtained by repeated "deflations", operations in which each element of the tiling changes into multiple smaller elements, following fixed rules.

Structure factor

Striking properties:

The long-range order is evident from the **dense set** of Bragg peaks in the Fourier transform of the Penrose lattice.

A **10-fold** rotational symmetry axis is present in reciprocal space.

DFB design

National Enterprise for nanoScience and nanoTechnology

DFB design

DFB design

Penrose eigenmode

From 2D FEM Effective index approx.

Standing wave mode

- spans the whole device
- holes in phase

___ Colorscale: E_z(t) in the waveguide

Penrose eigenmode

From 2D FEM Effective index approx.

Standing wave mode labeled "P"

$$F = 3.17 \text{ THz}$$

 $Q_{2D} = 145$

Penrose eigenmode

Real space

Reciprocal space

Fabricated devices

Gain band: 2.9 - 3.4 THz

Pattern tuning Nearest neigh. a = 21-23 um

Hole radius r/a = 0.26-0.33

Fabricated devices

Gain band: 2.9 - 3.4 THz

Pattern tuning Nearest neigh. a = 21-23 um

Hole radius r/a = 0.26-0.33

Batch (a = 23 um)

Moderate peak output power, single mode operation

Batch (a = 22 um)

High peak output power, some mode competition

Batch (a = 21 um)

N FS

Just for the r/a = 0.26 device Considerable peak output power, ~single mode operation

Numeric (3D F.E.M.)

Measured far field (a = 21, r/a = 0.26)

We designed, fabricated and characterized double metal THz QCLs based on quasiperiodic Penrose DFB pattern.

The Penrose design allows to reach sizeable output power, with radiative performance figures already comparable to the best vertical-emitting devices so far.

Quasiperiodic lattices represent a robust design strategy for the realization of vertical emitting DFB resonators.

Thank you for your attention

SCUOLA NORMALE

SUPERIORE

ISTITUTO NANOSCIENZE CONSIGLIO NAZIONALE DELLE RICERCHE

PISA

Action MP1204

Tera-MIR Radiation: Materials, Generation, Detection and Applications

2D FEM calculation

Other eigenmodes

L341 active region

M. Belkin et al. Optics Express 16, 3242 (2008)

Three-well resonant-phonon QCL →

- Quite large gain bandwidth (600 GHz)
- Main optical mode can be easily tuned by ≈13% of its central frequency

Double-metal waveguide ->

- THz radiation confined in the direction of growth (vertical, z-axis)
- propagation in the *x*-*y* plane → device is a nearly ideal 2D system

NEST

L341 active region

Prototype Device

